Escaping Hierarchical Traps
with Competent Genetic Algorithms

Martin Pelikan and David E. Goldberg

IIliGAL Report No. 2001003
January 2001

[linois Genetic Algorithms Laboratory
University of Illinois at Urbana-Champaign
117 Transportation Building
104 S. Mathews Avenue Urbana, IL 61801
Office: (217) 333-2346
Fax: (217) 244-5705

Escaping Hierarchical Traps
with Competent Genetic Algorithms

Martin Pelikan and David E. Goldberg
Illinois Genetic Algorithms Laboratory
104 S. Mathews Avenue, Urbana, IL. 61801
University of Illinois at Urbana-Champaign
Phone/FAX: (217) 333-2346, (217) 244-5705
{pelikan,deg}@illigal.ge.uiuc.edu

Abstract

To solve hierarchical problems, one must be able to learn the linkage, represent partial solu-
tions efficiently, and assure effective niching. Linkage learning results in a good problem solver on
a single level. Niching and efficient representation of partial solutions ensure that the algorithm
maintains enough alternative solutions on each level to compose the solutions on a higher level.
We combine the Bayesian optimization algorithm, which has been shown to solve problems on a
single level efficiently, with a powerful niching technique based on crowding and restricted tour-
nament selection. Decision graphs are used as local structures to encode information about the
relationships among the variables in a problem. The proposed algorithm is called the hierarchical
Bayesian optimization algorithm. Additionally, we propose a new class of hierarchically decom-
posable problems that are deceptive on each level and show that the proposed algorithm scales up
subquadratically on all test problems. The proposed class of problems is called hierarchical traps.
Empirical results are in agreement with our recent convergence and population sizing theory.

1 Introduction

Genetic algorithms (GAs) (Holland, 1975; Goldberg, 1989) combine short order partial solutions to
form solutions of higher order. New solutions undergo selection and the process is repeated until
the entire solution is formed. However, fixed, problem-independent, recombination operators have
shown to perform quite poorly on problems with interactions among the variables spread across the
solutions (Thierens & Goldberg, 1993; Pelikan, Goldberg, & Canti-Paz, 1998; Bosman & Thierens,
1999). Moreover, the hierarchical nature of the optimization process has earned only little attention
and it has been assumed that genetic algorithms do this automatically.

The purpose of this paper is to show that competent genetic algorithms which succeeded in
solving problems of bounded difficulty on a single level quickly, accurately, and reliably, can be quite
easily extended to solve problems that are hierarchical in their nature. We focus on the Bayesian
optimization algorithm (Pelikan et al., 1998) using decision graphs to represent the conditional
probabilities of the model used to represent populations of promising solutions. There are three
major issues one must address to succeed in solving difficult hierarchical problems: linkage learning,
niching, and efficient representation of the model. Linkage learning ensures powerful recombination.
Niching and efficient representation of the model ensure preservation of alternative partial solutions
that are assembled to form solutions of higher order. The proposed algorithm is called the hierarchical
Bayesian optimization algorithm (BOA). Hierarchical BOA is able to solve problems that not only

require that we approach them hierarchically, but that also deceive the algorithm to the local optimum
on each level. Additionally, we design a hierarchical test problem which requires both efficient linkage
learning and niching and perform a number of experiments to show that the proposed algorithm is
able to solve the problem efficiently. Due to its deceptive nature, the proposed problem is called the
hierarchical trap.

The paper starts by introducing probabilistic model building genetic algorithms (PMBGAs) (Pe-
likan, Goldberg, & Lobo, 2000) that evolve a probabilistic model of promising solutions to guide the
search. Section 2.2 introduces the Bayesian optimization algorithm which uses Bayesian networks
as a model. Section 3 introduces various niching methods that were used in the past as a diversity
maintenance tool for genetic and evolutionary algorithms. The use of niching in PMBGAs is dis-
cussed. Test problems tackled in our experiments are described in Section 4. Section 5 provides and
discusses the results of our experiments. Section 6 discusses interesting topics to be covered in future
research in this area. Section 7 summarizes and concludes the paper.

2 Background

By applying recombination and mutation, GAs are manipulating a large number of promising partial
solutions. However, fixed, problem independent, recombination and mutation operators often result
in inferior performance even on simple problems. Without knowing where the important partial
solutions are and designing problem specific operators that take this information into account, the
required number of fitness evaluations and population size grow exponentially with the number of
decision variables (Thierens & Goldberg, 1993).

That is why there has been a growing interest in linkage learning which studies methods that are
able to learn where the important interactions in the problem are and use this information to combine
solutions more effectively. This allows the algorithms to solve a large class of problems quickly,
accurately, and reliably. One of the approaches to linkage learning is based on using probability
distributions to model promising solutions found so far and generating new solutions according to
the estimated distribution (Miihlenbein & Paaf}; 1996; Pelikan, Goldberg, & Lobo, 2000). Probability
distributions can capture variables which are correlated and the ones which are independent. This
can subsequently be used to combine the solutions in more effective manner.

This section first reviews probabilistic model-building genetic algorithms. Subsequently, the
Bayesian optimization algorithm is described. Finally, semantics, learning, and utilization of Bayesian
networks are briefly discussed.

2.1 Probabilistic Model-Building Genetic Algorithms

The set of selected solutions can be seen as a sample from the space of solutions that we are interested
in. Statistical information about the selected solutions can be used to estimate their distribution
and this estimate can be used in order to generate new solutions. In other words, the distribution of
“good” points can be estimated and the new points can be simply generated according to the same
distribution. The algorithms based on this principle are called probabilistic model-building genetic
algorithms (PMBGASs) (Pelikan, Goldberg, & Lobo, 2000), estimation of distribution algorithms
(EDAs) (Miihlenbein & PaaB, 1996), or iterated density estimation algorithms (IDEAs) (Bosman,
2000).

However, estimating a multivariate distribution is not an easy task. There is a trade off between
the accuracy of the estimation and its computational cost. To use computationally efficient methods,
one must make a number of assumptions, all of which decrease the generality of the used method.

Moreover, it is very difficult to decide which model is the best one for our purpose. Too simple
model may not cover all important interactions. Too complex model may not bring enough variation
in the optimization process. Both too simple and too complex models may thus result in inferior
performance. See Pelikan and Goldberg (2000a) and Pelikan, Goldberg, and Sastry (2000) for a
discussion on this topic. Subsequent paragraphs describe basic principles of the algorithms that use
probabilistic models of promising solutions to guide their search. For a more detailed overview of
PMBGAs, see Pelikan et al. (2000).

Probably the simplest way to estimate the distribution of good solutions is to assume that the
variables in a problem are independent. New solutions can be generated by only preserving the
proportions of the values of all variables independently of the context. This is the basic princi-
ple of the population based incremental learning (PBIL) algorithm (Baluja, 1994), the compact
genetic algorithm (cGA) (Harik et al., 1998), and the univariate marginal distribution algorithm
(UMDA) (Miihlenbein, 1997). Since these algorithms take into account only contributions of the
values of each variable without considering the contexts where these contributions take place, it is
natural to expect that the algorithms should work very well on linear problems, but experience great
difficulties on problems where the variables are correlated and therefore the context does matter.

The first attempts to resolve this problem were the incremental algorithm using so-called depen-
dency trees in order to estimate the distribution of selected solutions (Baluja & Davies, 1997) and
the population-based MIMIC algorithm using a simple chain distribution (De Bonet et al., 1997).
Another population-based attempt to solve the problem of the disruption of building blocks of or-
der two by using a slightly more general technique is the bivariate marginal distribution algorithm
(BMDA) (Pelikan & Miihlenbein, 1999).

In the algorithms described above, to determine the contribution of a particular variable, the con-
text of one other variable can be taken into account. Only acyclic models are allowed. Consequently,
the algorithms can solve more complex problems efficiently. However, this has been shown to be still
insufficient to solve problems with interactions of higher order efficiently (Pelikan & Miihlenbein,
1999; Bosman & Thierens, 1999). Covering pairwise interactions still does not preserve partial so-
lutions of higher order. Moreover, interactions of higher order do not necessarily imply pairwise
interactions that can be detected at the level of partial solutions of order two.

The factorized distribution algorithm (FDA) (Miihlenbein et al., 1998) uses a fixed factorization of
the distribution to generate new candidate solutions. The FDA is capable of covering the interactions
of higher order and combining important partial solutions effectively. It works very well on uniformly-
scaled additively decomposable problems. However, the FDA requires prior information about the
problem in the form of a problem decomposition and its factorization. As input, this algorithm
gets complete or approximate information about the structure of a problem. Unfortunately, this
information is mostly not available without computationally intensive problem analysis. We would
like our algorithm to be able to learn the structure of the problem and utilize this information on
the fly. Using an approximate distribution according to the current state of information represented
by the set of promising solutions can be very effective even if it is not a valid factorization.

The above problem has been overcome with the Bayesian optimization algorithm (Pelikan, Gold-
berg, & Canti-Paz, 1998), which uses Bayesian networks to model promising solutions and generate
the new ones and the extended compact genetic algorithm (ECGA) (Harik, 1999) which uses the
minimum description length metric to construct groups of correlated variables and generates new so-
lutions accordingly. For another method using Bayesian networks, see also Etxeberria and Larranaga
(1999). The next subsection describes the Bayesian optimization algorithm.

2.2 Bayesian Optimization Algorithm

The Bayesian optimization algorithm (BOA) (Pelikan, Goldberg, & Canti-Paz, 1998) uses Bayesian
networks to model promising solutions and subsequently guide the exploration of the search space.
In the BOA, the first population of strings is generated randomly with a uniform distribution. The
initial population can also be biased to the regions that we are interested in. From the current
population, the better strings are selected. Any selection method can be used. A Bayesian network
that fits the selected set of strings is constructed. Any metric as a measure of quality of networks
and any search algorithm can be used to search over the networks in order to maximize/minimize the
value of the used metric. Besides the set of good solutions, prior information about the problem can
be used in order to enhance the estimation and subsequently improve convergence. New strings are
generated according to the joint distribution encoded by the constructed network. The new strings
are added into the old population, replacing some of the old ones. The pseudo-code of the BOA is
shown in Figure 1.

The Bayesian Optimization Algorithm (BOA)

(1) set t 0

randomly generate initial population P(0)

(2) select a set of promising strings S(¢) from P(t)

(3) construct the network B using a chosen metric and constraints

(4) generate a set of new strings O(¢) according to the joint distribution encoded by B
(5) create a new population P(t + 1) by replacing some strings from P(t) with O(t)
set t—t+1

(6) if the termination criteria are not met, go to (2)

Figure 1: The pseudo-code of the Bayesian optimization algorithm.

The next subsection describes basic principles of learning and utilization of Bayesian networks.
Subsequently, local structures that can be used to make the representation of the model more efficient
are discussed and a simple greedy algorithm for network construction is briefly described.

2.3 Bayesian Networks

A Bayesian network (Pearl, 1988) is a directed acyclic graph with the nodes corresponding to the
variables in the modeled data set (in our case, to the positions in solution strings). Mathematically,
a Bayesian network encodes a joint probability distribution given by

n—1
p(X) = Hp(Xi|HXi)7 (1)
i=0
where X = (Xo,...,X,_1) is a vector of all the variables in the problem, IIx, is the set of parents

of X; in the network (the set of nodes from which there exists an edge to X;) and p(X;|IIx,) is the
conditional probability of X; given its parents IIx,. A directed edge relates the variables so that in the
encoded distribution, the variable corresponding to the terminal node is conditioned on the variable
corresponding to the initial node. More incoming edges into a node result in a conditional probability
of the corresponding variable with a conjunctional condition containing all its parents. The network

encodes independence assumptions that each variable is independent of any of its antecedents in
ancestral ordering given its parents.

To encode the conditional probabilities corresponding to the nodes of the network, one can
use a simple probability table listing probabilities of all possible instances of a variable and its
parents. The probabilities of one particular value of each variable can be eliminated and computed
using the remaining ones because the probabilities sum to one. However, the size of such a table
grows exponentially with the number of parents of the variable even though many probabilities of
higher order may be the same. To solve hierarchical problems, it is essential to be able to represent
conditional probabilities by structures that are polynomial in the order of interactions. While the
order of interactions can be as high as the size of the problem, the number of corresponding alternative
partial solutions must be polynomial in their order to allow efficient and reliable exploration. The
next subsection presents alternative ways to represent conditional probabilities in the model which
allow a more compact representation of the local densities in the model.

2.4 Local Structures in Bayesian Networks

One simple extension of the probability table is a default table (Friedman & Goldszmidt, 1999).
In a default table, only some instances of the variable and its parents are listed together with the
corresponding probabilities. The remaining probabilities are obtained from the default entry which
is simply an average of the remaining (unlisted) probabilities.

One can use more complex local structures, such as decision trees (Friedman & Goldszmidt, 1999)
or decision graphs (Chickering, Heckerman, & Meek, 1997). Each internal node of a decision tree
or graph corresponds to some variable. Children (successors) of each internal node correspond to
disjoint subsets of values the variable can obtain. For binary variables, each non-leaf node can have
exactly two children where each child corresponds to one of the values zero and one. In case of
bigger alphabets, there are more possibilities. A decision graph allows different parents to have the
same child. This makes the structure both more general and expressive. In hierarchical BOA we
use decision graphs. However, there is only little difference between the performance using decision
graphs and trees. Since trees are simpler to interpret we used only decision trees in our experiments.

Using local structures can reduce the space we need to represent the model. Additionally, it can
refine the model building by using smaller operators and make the model more general for some data
sets. One can encode interactions of certain high order without having to consider exponentially
many alternative instances and probabilities. Please, see Pelikan, Goldberg, and Sastry (2000) for
more details on using decision graphs for model building in the BOA. See Figure 2 for an example
of a decision tree and graph encoding the local probability density p(z|z,y).

2.5 Learning Bayesian Networks

To construct the network, a simple greedy algorithm is usually used. This algorithm performs simple
graph operations that improve the quality of the current network the most, starting from an empty
network or a network from a different source. To determine the quality of each network, various
scoring metrics can be used. Recently, we have used the Bayesian-Dirichlet metric, the minimum
description length (MDL) metric, and a metric which is a combination of the Bayesian-Dirichlet and
MDL metric. For more details on the network construction and scoring metrics for simple Bayesian
networks of for the ones with local structures, please see Pelikan, Goldberg, and Canti-Paz (2000b)
and Pelikan, Goldberg, and Sastry (2000).

plzlx=1

p(z1x=0,y=0) p(zlx=0.y=1) p(zlx=0,y=0) p(zlx=0,y=1)

p@&:D

(a) Decision tree (b) Decision graph

Figure 2: Example decision tree (a) and decision graph (b) for encoding a conditional probability
distribution of p(z|z,y).

3 Niching

The purpose of niching in genetic and evolutionary optimization is twofold: (1) discovery of multiple
solutions of the problem and (2) preservation of alternative solutions until one can decide which
solution is better. In some real-world applications it is important to find multiple solutions and let
the expert or experiment decide which of the solutions is the best after all. This is usually the case
when the fitness function does not fully determine which solution is the best in practice but only
focuses on several aspects of solution quality, or when for the sake of efficiency instead of using a
complete fitness function one uses only its approximation that is more computationally efficient. The
reason for preserving multiple alternative solutions is that on some difficult problems one cannot
clearly determine which alternative solutions are really on the right track until the optimization
proceeds for a number of generations. Without niching the population is a subject to genetic drift
which may destroy some alternatives before we find out whether or not they are the ones we are
looking for.

There are three general approaches to niching. One approach modifies the fitness landscape before
the selection is performed. The second approach modifies the selection itself to take into account the
fitness as well as the genotype or the phenotype instead of using the fitness as the only criterion. Both
approaches allow solutions that share many similarities to compete for common resources. Crowding,
restricted mating, and fitness sharing are based on this idea. The third approach is to isolate several
groups of individuals rather than to keep the entire population in one location. The individuals can
migrate between different locations (islands or demes) at certain intervals and allow population at
each location develop in isolation. In this paper we mainly focus on methods that modify only the
selection and replacement mechanisms.

Some related work studies the preservation of diversity from a different point of view. The
primary goal of these techniques is not the preservation of multiple solutions or alternative search
regions, but the avoidance of premature convergence. One could, for instance, inject randomly
generated individuals into the current population each now and then (Mauldin, 1984), or control the

selection (Baker, 1985) somehow to prevent premature convergence. However, this is not a primary
purpose of using niching in our work. Various techniques for niching were also proposed in the area
of multiobjective optimization (Schaffer, 1984; Horn & Nafpliotis, 1993; Fonseca & Fleming, 1993).
These methods are not applicable to single-criterion optimization and therefore we do not discuss
them in this paper.

The next three sections briefly introduce history and existing methods in the three main classes
of niching methods: selection-based, fitness-sharing, and island models. Subsequently, we describe
the method used in hierarchical BOA.

3.1 Niching Based on Selection

All niching methods localize competition in some way. This section reviews methods that localize
competition by modifying selection and replacement strategies. Cavicchio (1970) introduced the
preselection where the offspring replaced the inferior parent. This encourages competition among
similar individuals since the offspring and its parents usually share many similarities. This scheme
was later generalized by De Jong (1975) who proposed the so-called crowding. In crowding, for each
new individual a subset of the population is first selected. The new individual then replaces the most
similar individual in this subset. Earlier in the run only little will change compared to a random
replacement. However, as the run continues, the individuals will create groups of similar individuals
who compete for space with other members of the same group.

The original purpose of crowding was not to preserve diversity but to speed up the convergence.
De Jong (1975) showed that the simple genetic algorithm converged to the optimum faster when
crowding was used on the tested multimodal function. Of course, crowding can be used also as a
diversity preservation tool, having in mind premature convergence and preservation of alternative
solutions, which is the primary goal of applying niching in our work. The crowding scheme was later
used by Goldberg (1983) for a pipeline design by learning classifier systems.

Perry (1984) created multiple contexts in which the fitness function varied according to some
externally defined schemata which define the species. Individuals could migrate between different
contexts. The technique of Perry is mainly interesting for its biological background.

A number of techniques that restrict mating in some way to promote the niching behavior were
proposed. Hollstein (1971) required close individuals to mate as long as their fitness improved. When
the trend changes and the quality of the “family” decreases, crossbreeding across families is allowed.
Booker (1982) discussed the need for restricted mating to prevent the formation of lethals. For the
restricted mating, however, there is only little theory to support the presented ideas.

The deterministic crowding of Mahfoud (1992) pairs each offspring with the more similar parent
and performs a competition among these pairs. The offspring replaces the parent only if it has
a higher fitness. This idea was later studied by Mengshoel and Goldberg (1999) who proposed
probabilistic crowding as a probabilistic extension of the original deterministic crowding method.
In probabilistic crowding, the winner of the parent-offspring tournament is chosen by using the
probability proportional to the fitness.

The gene invariant genetic algorithm (GIGA) (Culberson, 1992) maintains constant univariate
frequencies of all values on all positions. For instance, in case of binary strings and uniformly
generated initial population, at any point in the run there will be about half ones and half zeros
on each string position. The GIGA is a static genetic algorithm, i.e. it selects and recombines only
two individuals at each generation. Fitness proportionate selection is used to select the parents and
the two children replace their parents. One-point, multiple-point, or uniform crossover can be used
to recombine the parents. The GIGA never loses genetic material (particular alleles) and therefore

mutation is eliminated. GIGA has been shown to perform the same or better than traditional
(simple) GAs on De Jong’s and deceptive test functions (Culberson, 1992). Preservation of univariate
frequencies is a very interesting idea. However, it does not guarantee useful diversity. The success
of the GIGA is determined by mixing (recombination).

Harik (1994) proposed the restricted tournament selection as an extension of De Jong’s crowding.
Restricted tournament selection (RTS) selects parents at random with a uniform distribution. After
performing crossover, a subset of the population is selected for each parent, similarly as in crowding.
However, instead of automatically replacing the closest individual, the two individuals compete and
the one that has a higher fitness wins. In this fashion, the selection step is performed by elitist
replacement with a flavor very similar to crowding. No extra selection operator is required. Harik
showed that RTS performs very well on a number of multimodal problems and is able to locate all
optima even on functions which are highly multimodal and very difficult to solve.

3.2 Niching by Fitness Sharing

To localize competition, fitness sharing modifies the fitness function. Both selection as well as
replacement remain the same. The section first discusses the two-armed bandit problem which can
be used as a simple intuitive example to introduce basic concepts of fitness sharing. Subsequently,
recently used niching methods based on fitness sharing are presented and discussed.

The two-armed bandit problem, which is often used in machine learning to illustrate different
facets of behavior of learning algorithms, was also used in one of the first studies of sharing. In the
two-armed bandit problem, the goal is to pull one of the two handles of a slot machine to gain the
most money at the end. The slot machine is a black box and therefore one can’t predict the outcome
based on anything but experience. The experience may be, of course, misleading.

There is a very interesting tradeoff in the two-armed bandit problem. If we pull the handle that
seems to give a higher payoff at the moment, we may never realize that the other handle is better
in the long run. However, if we pull the handle that seems to give lower payoff and this is in fact
true, we are again losing by wasting our time with the wrong handle. Holland (1975) introduced
a modification of the two-armed bandit problem where the number of times each handle is pulled
is proportional to the average outcome we get after pulling the handle. The analogy between the
two-armed bandit problem and genetic algorithms is apparent. The average outcome corresponds to
the fitness in genetic algorithms. The number of samples we give to each handle corresponds to the
number of copies in the current population. The basic idea is therefore to give each individual the
number of copies proportional to its quality. In other words, the quality of an individual determines
the amount of resources this individual gets.

The idea of sharing was developed further by Goldberg and Richardson (1987) who proposed
a practical scheme that was able to preserve multiple niches by defining the neighborhood of each
individual by the sharing function. In this scheme each individual shares a niche with each individual
that is within a certain range from either its genotype or the phenotype. The effect may decrease
with the distance and completely vanishes for distances greater than a certain threshold ogp4pe-

Deb and Goldberg (1989) calculated the value of the sharing threshold g4, from the desired
number of niches for dividing the space into a number of equally sized hyperspheres. Their study
concluded that the performance of crowding is inferior to that of sharing due to that crowding was
unable to maintain more than two different optima. In spite of quite pessimistic results with the
original crowding, the deterministic crowding of Mahfoud (1992) has been later shown to be able to
maintain multiple peaks and thus compete with fitness sharing.

One of the drawbacks of fitness sharing is that it experiences difficulty with preservation of

optima, that are close to each other. Moreover, it is quite difficult to estimate the number of niches.
The estimation of the number of niches is also important for methods based on crowding. Another
important issue is that the effects of fitness sharing are not well understood because sharing directly
changes the fitness values used for selection.

On the other hand, fitness sharing seems to be very stable and capable of preserving all optima
for long periods of time. The stability of sharing for the case with two niches was studied by Horn
(1993). Fitness sharing is also more sensitive to the fitness function.

3.3 Niching by Spatial Separation

There are two reasons why spatial separation should be desirable in genetic and evolutionary com-
putation. One reason is that in nature the populations are actually divided in a number of sub-
populations that (genetically) interact only rarely or do not interact at all. Another reason is that
separating a number of subpopulations allows an effective parallel implementation and is therefore
interesting from the point of view of computational efficiency. This section reviews and discusses
niching methods based on spatial separation. The use of spatial separation in combination with
probabilistic model-building genetic algorithms is discussed.

Spatial separation localizes competition by introducing some sort of geographical location of each
individual. Unlike in the fitness sharing, in the spatial separation the location of each individual
does not depend on its genotype or phenotype. Amount of information exchange between groups of
individuals from different locations is controlled by some strategy and may depend on the distance
or the relationship between the locations.

Much work in spatial separation was inspired by the shifting balance theory (Wright, 1968)
and the theory of punctuated equilibria (Eldredge & Gould, 1972). One approach is to divide
the population into a number of subpopulations. Each subpopulation evolves on its own island
and individuals migrate between the islands at certain rate. In this way, the genetic material is
exchanged within each of the subpopulations often while its flow to other subpopulations is reduced.
This approach was studied by Grosso (1985), inspired mainly by the theory of Wright, and by Cohoon,
Hegde, Martin, and Richards (1987), whose work is primarily inspired by the theory of Eldredge.
The second approach is to introduce some kind of distance metric in the population and force
local competition and mating. This approach was studied by Gorges-Schleuter (1989), Collins and
Jefferson (1991), Davidor (1991), Miihlenbein (1991), and others.

The use of spatial separation was also studied in context of the probabilistic model-building
genetic algorithms (Pelikan & Goldberg, 2000b) as a niching and diversity preservation tool. Pelikan
and Goldberg divided the population of selected parents in each generation into a number of clusters.
A mixture of Gaussians was used to separate the solutions in the selected population by using the
k-means clustering method. Recombination in each cluster was done separately and the offspring of
each cluster was given a proportion of the new population of the size proportional to their average
fitness.

When using probabilistic models, the separation can be directly encoded by using mixture prob-
abilistic models. A special variable in the model is reserved for an identification of the group to
which the individual belongs. The interactions or parameters of local densities for each variable then
may depend on the value of this one variable. Various models such as Bayesian multinets (Geiger &
Heckerman, 1996) and models with hidden variables can be used. In this paper, however, we must
deal with a number of niches that can be exponential in the number of variables. Even though this
implies exponentially sized populations, one can use the fact that the model itself preserves diversity
quite well by that it makes many independence assumptions and uses these to generate new solutions.
Only little extra pressure toward diversity preservation is then required.

9

3.4 BOA using Restricted Tournament Replacement

In hierarchical BOA we use a niching method that is very similar to crowding and restricted tour-
nament selection. The replacement is localized by selecting a sub-set of the original population for
each new offspring and letting the offspring compete with the most similar member of this subset. If
the new offspring is better, it replaces the corresponding individual. The measure of similarity can
be based on either the genotype or the phenotype. Since the generation of a probabilistic model in
the BOA does not encourage using a steady state genetic algorithm, we incorporate niching in the
replacement step of a traditional BOA. Because the RTS is in fact used as a replacement technique
and not as a primary source of the selection pressure, we call the method the restricted tournament
replacement (RTR).

In the BOA with RTR, promising solutions are first selected from the current population and
a Bayesian network is constructed as their model. The built model is then used to create new
solutions. However, the new solutions are not automatically added into the original population,
replacing random or the worst solutions. Instead, for each new solution we first select a subset of
the original population and then let the new individual compete with the closest individual in this
selected subset. The winner takes the corresponding slot in the population. At the end, some of
the new individuals will be included in the new population and some will be discarded. The process
starting with the selection is repeated until the termination criteria are met. It is easy to see that
this model fits our pseudo-code presented first in Pelikan, Goldberg, and Cantd-Paz (1998) which is
also provided in Figure 1 in Section 2.2 of this paper.

One of the reasons for using RTR as a niching strategy for the BOA in this work is that it is easily
incorporated into the replacement process and does not affect modeling. With fitness sharing, the
input to the model would change and it would get harder to predict the behavior of the algorithm.
Another reason for using RTR is that this method was originally intended to be a part of a competent
genetic algorithm, in particular the messy genetic algorithm (Goldberg, Korb, & Deb, 1989).

It is important to set the size of the subsets that are selected to incorporate each new individual
into the original population. The size of these subsets is called a window size. A window size should
be proportional to the number of niches even though big populations can allow powerful niching
even with smaller window sizes. We have tried a number of settings on various difficult problems
presented in the next section. Even though for almost all problems, a constant window size w = 20
worked very well, for the most difficult problems, increasing the window size proportionally to the
size of the problem has significantly improved the performance.

A window size proportional to the size of the problem can be supported by the following argument.
For correct decision making on a single level, the population size must grow proportionally to the
problem size (Pelikan, Goldberg, & Cantid-Paz, 2000a). To maintain a certain number of niches,
one must lower-bound the size of each niche by a certain constant. Therefore, a population size
proportional to the problem size allows for maintenance of the number of niches proportional to the
problem size. The number of niches that RTR can maintain is proportional to the window size.
Therefore, the window size growing linearly with the size of the problem is the strongest niching one
can afford without increasing population sizing requirements.

The next section presents hierarchical problems used in this paper to test hierarchical BOA.
Hierarchical trap problems are introduced. Subsequently, we describe our experiments and provide
empirical results. Finally, we discuss the results, summarize and conclude the paper, and outline
future work.

10

4 Test Problems

Since the primary purpose of this paper is to show that hierarchical BOA can solve problems that
are hierarchical in nature, three test problems are hierarchical. To show that the method is capable
of discovering multiple optima of highly multimodal problems, we also test the algorithm on a highly
multimodal problem of 5 concatenated bipolar functions of order 6.

The following section discusses the design and framework for building hierarchical problems.
Subsequently, three hierarchical problems are defined. The first problem is hierarchical if-and-only-if
(HIFF) function proposed by Watson, Hornby, and Pollack (1998), where on each level the neigh-
boring building blocks are required to be homogeneous and of the same value. This leads to two
global optima, one is the string of all ones and one is the string of all zeroes. Section 4.3 introduces
another class of hierarchical functions called hierarchical traps. Hierarchical traps are inspired by
the tobacco road functions (Goldberg, 1997; Goldberg, 1998; Pelikan & Goldberg, 2000c). They use
basic deceptive functions on each level to make the problem even harder. The algorithm is deceived
to the local optimum on each level until the top level is reached. The top level finally determines
the real global optimum. Hierarchical traps have only one global optimum, in the string of all ones.
We construct two hierarchical trap functions that we use in our experiments. Section 4.4 introduces
remaining test functions.

4.1 Hierarchically Decomposable Functions

Hierarchically decomposable functions (HDFs) (Watson, Hornby, & Pollack, 1998) are a subclass
of general additively decomposable functions (Pelikan, Goldberg, & Canti-Paz, 1998). HDFs are
defined on multiple levels where the input to each level is based on the solutions found on lower
levels. The fitness contribution of each building block is separated from its interpretation (meaning)
when it is used as a building block for constructing the solutions on a higher level. The overall fitness
is computed as the sum of fitness contributions of each building block.

Partial solutions on each level can be found by decomposing the problem into a number of
subproblems of bounded difficulty. On each level, the problem is defined by using partial solutions
from a lower level as basic building blocks. In spite of bounded difficulty of HDFs on each level,
a hierarchical function can contain interactions of order equal to the size of the problem. Bounded
difficulty on each level of the hierarchy makes HDFs solvable in polynomial time even though the
problem is very difficult when viewed on a single level. It is important to note that hierarchical
problems of bounded difficulty are a strictly more difficult class of problems than problems of bounded
difficulty on a single level. This observation is very important for interpreting our results.

A hierarchically decomposable function is defined by its structure in the form of a tree with
one-to-one mapping between the leaves and the variables in a problem, and two sets of functions:
(1) the interpretation functions and (2) the contribution functions. The structure defines which
blocks of interpretations to interpret to the next level and how, and which blocks contribute to the
overall fitness on this level. The interpretation functions define how we interpret solutions from lower
levels to become inputs of both the contribution and interpretation functions on a higher level. The
contribution functions define how much certain blocks of interpretations on each level contribute to
the overall fitness.

The difficulty of hierarchical functions depends on the underlying structure as well as the con-
tribution and interpretation functions. The hierarchical if-and-only-if (HIFF) function (Watson,
Hornby, & Pollack, 1998) uses the “if and only if” function on each level. More difficult functions
have been proposed (Goldberg, 1997; Goldberg, 1998; Pelikan & Goldberg, 2000c), where functions

11

deceive the algorithms to a local optimum on each level. Only at the top level it becomes clear which
optimum is the global one. This feature makes the problem much more challenging.

In this paper, only simple structures such as balanced binary and ternary trees are used. The
contribution of each subfunction on each level will be multiplied by a certain factor so that the
contributions on all levels are of the same magnitude. We do not present the general definition of
the hierarchically decomposable problems and only describe the test problems we used. For more
detailed definition of what we mean by hierarchically decomposable functions, please see Pelikan and
Goldberg (2000c).

4.2 Hierarchical If-and-Only-If (HIFF)

The structure of the HIFF is a balanced binary tree. By height(z) we denote the distance from
the node x in the tree to one of its antecedent leaves. Since the tree is balanced, the height is
well-defined. Each leaf contributes to the fitness by 1. Each parent node x contributes to the overall
fitness by 20€19m4(%) if and only if the interpretations of its children are both either 0 or 1. Otherwise,
the contribution is 0. The two symbols are interpreted to their parent on the next level as 0 in case
they are both 0’s, 1 in case they are both 1’s, and ’-’ otherwise. The leaves of the tree get as input
the input string with no change.

Let us illustrate this on an example. To follow the example, see Figure 4.2. Let the input string
be X = 00001101. Each leaf corresponds to the fitness by 1, which sums up to a total contribution
of 8 at the bottom level. On the next level, there are 4 parents with children (0,0), (0,0), (1,1), and
(0, 1), respectively. Each of the first three parents contributes to the fitness by 2 (the height is 1 and
thus the contribution is 2! = 2), and the last parent does not contribute to the fitness at all, since
the values of its children are neither (0,0) nor (1,1). The pairs of children interpret to values 0, 0,
1, and ’-’. Therefore, on the next level, there are two parents with pairs of children (0,0) and (1,-),
respectively. The first parent contributes to the fitness by 4 and the second one has no contribution.
The pair (0,0) interprets to 0 and the pair (1,-) interprets to ’-’. On the next level, there is only one
parent with a pair of children (0,-). This parent does not contribute to the overall fitness. We do not
have to interpret the symbols to the next level anymore, because this will not be used (we already
considered the root). The overall fitness of X = 00001101 is thus f(X)=84+2+2+2+4=18.

4.3 Hierarchical Trap Functions

Hierarchical trap functions use a balanced k-ary tree as the underlying structure, where & > 3.
However, as we are interested in a scale-up of our algorithm and the problem sizes must grow as
powers of k, it is reasonable to set k£ to only a small value. The interpretation functions interpret
blocks of all 0’s and 1’s to 0 and 1, respectively, similarly to the HIFF. Everything else is interpreted
into ’-’.

Each contribution function is a function of unitation, i.e. its value depends only on the number
of ones in the input string. If there is any -’ in the input to this function, it simply returns 0. If
the input is composed of u ones and k — u zeroes (k bits total), the output of the trap function is
determined by

P = I e e

Jiow — ug®% otherwise

See Figure 4 for a graph of the trap function. The values of fj;4, and fjo, define the heights
of the two peaks. The function is fully deceptive whenever fy;q is greater than fj,, within some

12

Figure 3: An example of HIFF for a string X = 00001101. The interpretations are displayed by
circles. The contribution of each node is shown on the right side of the circle with the interpretation
in the node. The fitness of this input string is 18.

proportion depending on the order k of the function. That means that any schemata of order lower
than k£ bias the search to the local optimum of all zeroes. For sufficient conditions on deception,
please see Deb and Goldberg (1994). The trap with equal peaks fpignh = fiow is not in fact deceptive
because both optima are equal and therefore the schemata bias the search toward one of the global
optima (the string of all zeroes). The trap attracts hillclimbers to strings with all zeroes unless they
start in the string of all ones. Analogically as in the HIFF, contributions on each level are multiplied
by k to the height of the level in order to make the overall contribution of all levels the same.

In both our functions, the underlying structure is a ternary tree (i.e., k = 3) and the leaves do not
contribute to the overall fitness. For all non-leaf nodes = of the first hierarchical trap except for the
root, the contribution is computed by a trap function with equal peaks fyign = fionw = 1 multiplied
by 3h€i9ht(#) The contribution of the root node is given by the trap function with fhigh = 1 and
fiow = 0.9 multiplied by 3height(root) -~ Nyltiplication of the contribution of each node by 3 to the
height of the node results in that the overall contribution of each level has the same magnitude. In
this fashion, the function biases the search to the solution of all zeroes on each but the top level.
However, the optimum is in the string of all ones. The top level is also deceptive which makes the
problem even harder. See Figure 5 for a simple example of this function defined on two non-leaf
levels. The above function is denoted by H-Trapl in further text.

In the second function the bias toward solutions with many zeroes is made even stronger by
making the peak fj,, higher than the other peak everywhere except for the root. The contribution
function in the root remains the same as before, with the peaks fr;qn = 1 and fio,, = 0.9. To keep
the global optimum in the string of all ones, the following inequality must be satisfied:

(k - 1)(flow - fhigh) < f}lngh - fl,owa

where fio, and frign denote the peaks for the levels below the root, f/,, and ff’”-gh denote the peaks
for the root, and & is the number of non-leaf levels. We set the fyign = 1, fiow = 1+0.1/k, filngh =1,

13

high

low

u

Figure 4: Trap function of order k.

Figure 5: An example of the hierarchical trap function for a string X = 000000111. The interpreta-
tions are displayed by circles. The contribution of each node is shown on the right side of the circle
with the interpretation in the node. The fitness of this input string is 13.05.

and f;,,, = 0.9. This assignment satisfies the above inequality. The function is denoted by H-Trap2
in further text.

The HIFF function does not bias the search toward either global optimum. Unlike the HIFF, both
hierarchical trap functions H-Trapl and H-Trap2 bias the search toward solutions with all zeroes on
all levels. However, the actual global optimum is in the string of all ones. Therefore, the functions
are very difficult to solve and without effective linkage learning required to preserve the local optima
on each level and niching required to preserve alternative partial solutions until solving the problem
on the highest level, the algorithm cannot reach the global optimum. Of course, having information
about the problem structure in advance would allow a problem-specific recombination operator in
combination with niching to solve the problem, too. However, once we have the information about
the problem structure of this problem, the problem becomes quite easy.

4.4 Other problems

The bipolar deceptive function of order 6 is constructed by concatenating a number of bipolar
subfunctions of order 6 (Deb, Horn, & Goldberg, 1992). The bipolar function of order 6 is constructed

14

from a deceptive function of order 3 defined on binary vectors X = (Xj, X1, X2) of order 3 as

0.9 ifu=0
0.8 ifu=1
Jaaee) =3 g pu=2

1 otherwise

where u is the number of one’s in the input vector (string) X. The bipolar function of order 6 is
defined on binary vectors of length 6 as

Jevip(1) = f3dec(|3 — ul).

The bipolar fitness function is then defined as a concatenation of a number of bipolar subfunctions:

n/6—1

Foipotar(X) = > fovip(Xi + Xi1 + Xig2 + Xins + Xiva + Xiys),
i=0

where X = (X,...,X,_1) is the input string.

5 Results

The primary goal of our experiments was to show that the BOA with an appropriate niching method
(RTR) is capable of solving difficult hierarchical problems efficiently and it scales up subquadratically
with the problem size. The second goal was to relate the empirical results on hierarchical problems
to the population sizing and convergence theory (Pelikan et al., 2000a). Yet another goal was to show
that the BOA with RTR is capable of discovering multiple optima in highly multimodal functions
and maintain these for long periods of time. This section starts by describing our experiments.
Subsequently, the experiments focusing on the scale-up behavior are presented. The results are
discussed and related to theory. Finally, an example run of hierarchical BOA on a highly multimodal
problem is analyzed to show how hierarchical BOA discovers all global optima of the problem.

To show how the algorithm scales up, we performed tests on each function with varying problem
size. For each problem size, we required that the algorithm find the global optimum in all 30
independent runs. The performance was measured by an average number of fitness evaluations
until the optimum was found. The population size was determined empirically to maximize the
performance (i.e., to minimize the number of fitness evaluations until the optimum was found). This
was usually achieved with the minimal population size required to converge in all 30 runs. Sometimes,
the optimal population size was slightly bigger than the minimal one. Binary tournament selection
was used in all experiments. Except for the experiments we have done to gain experience with the
restricted tournament replacement, we always use the window size equal to the problem size, i.e.
w = n. We used decision graphs to represent conditional probabilities in the model and construct
the model. Prior distribution of models is biased toward simpler models (Pelikan et al., 2000).

The results of our experiments on the HIFF, H-Trapl, and H-Trap2 functions are shown in
Figure 6. In all three cases the algorithm scales up subquadratically. On the left-hand side of the
figure, the graphs in arithmetic scale display the growth of the number of fitness evaluations with
respect to the size of the problem for all three problems.

Theory of population sizing and time to convergence for the BOA on separable problems of
bounded difficulty (Pelikan, Goldberg, & Cantii-Paz, 2000a) can be used to estimate time to conver-
gence of hierarchical BOA on hierarchical problems assuming that hierarchical BOA finds a correct

15

model on each level. Theory suggests that a single level of the hierarchical problem can be solved in
about O(n'?) fitness evaluations. The number of levels in all three hierarchical problems grows with
a logarithm of the problems size, i.e. O(logn). Thus, the overall time to convergence should grow as
O(n'®logn). In fact, we tried to approximate our experimental results with a function of the form
an®logn, where a and b were determined by the least mean square error method. In all cases, the
optimal exponent b was from about 1.55 to about 1.66 which is very close to what we would expect
(1.5) according to the theory. The fit is very good and matches also the slopes in the log-log scaled
graphs very accurately.

On the right-hand side, the log-log scaled graphs including the slopes between neighboring points
are shown. A linear function in this scale is a polynomial of the degree equal to the slope of the
curve. That means that, for instance, linear functions would have the slope of 1 and quadratic
functions would have the slope of 2. To show that the number of fitness evaluations grows at most
polynomially with the problem size, the curves in log-log scale must not grow faster than linearly.
The points must lie on a straight line and therefore the slopes must be constant. In our experiments,
we see that the slopes in fact decrease with the problem size. This is the effect of the logarithm in the
expected number of fitness evaluations. The slopes are also in agreement with the approximations
of the growth of fitness evaluations discussed in the above paragraph.

The simple genetic algorithm with fixed crossover is not able to optimize hierarchical functions
without making sure that interacting genes are close to each other. Under the assumption of tight
linkage, the simple genetic algorithm with good niching should work quite well. The algorithm
presented in Watson (2000) is able to solve the HIFF problem even for interacting genes spread
throughout the strings. However, Watson’s algorithm requires O(n?logn) fitness evaluations for a
problem of size n which is more than is required by our algorithm.

To show the ability of the algorithm to discover multiple optima, we performed a single run on
a bipolar function of size n = 30 with a sufficiently big population size and recorded the number
of copies of each global optimum in the population. The results of this experiment are shown in
Figure 7. The population size was set to 1500. We have performed a number of experiments with
varying parameters with a very similar result.

There are two important observations. First, the algorithm is able to discover all 32 global optima
of the function quite fast and maintain these very stably. In order to find the optima, it is necessary
to learn the linkage well and use the linkage information to recombine the solutions effectively. Once
the optima are discovered, they gradually take over a part of the population. After only a couple
of generations, almost every replacement results in replacing the same optimum, since this is the
closest solution one can find and it occupies big enough portion of the population to be selected by
the RTR with a high probability.

The second important observation is that even though all global optima have the same fitness
value, they occupy quite different proportions of the population, from about 1.27% to about 5.53%.
This confirms the intuition that, unlike fitness sharing, the methods based on crowding are not
very sensitive to the fitness values. They are able to maintain a number of alternatives but the
total space occupied by each alternative is not proportional to its fitness. We do not see this as a
disadvantage, even though allocation of resources proportional to the fitness can become important
on some problems.

16

Fitness evaluations

Fitness evaluations

Fitness evaluations

90000

80000

\Qﬁ

Experiment —+—
Best fit

70000

60000

50000

40000

30000
20000

A

10000

T

225000

200000

175000
150000
125000
100000
75000
50000
25000
0

250000

225000

200000
175000
150000
125000
100000
75000
50000
25000
0

25

50 75 100 125 150

Problem size

175 200 225 250

(a) HIFF: Arithmetic scale.

Experiment —+——
Best fit

N

75 100 125 150

Problem size

175 200 225 250

(c) H-Trapl: Arithmetic scale.

Experiment ———
Best fit

75 100 125 150

Problem size

175 200 225 250

(e) H-Trap2: Arithmetic scale.

Fitness evaluations (log-scale) Fitness evaluations (log-scale)

Fitness evaluations (log-scale)

100000

10000

1000

100000

10000

100000

10000

Slope=1.74

Slope=1.78

Slope=1.87

100
Problem size (log-scale)

(b) HIFF: Log scale.

Slope=1.86

Slope=1.96

100

Problem size (log-scale)

(d) H-Trapl: Log scale.

Slope=1.73

Slope=1.77

100
Problem size (log-scale)

(f) H-Trap2: Log scale.

Figure 6: Results on the hierarchical functions.

17

90 T T T T T T T

70 |

60 |-

50 |

Number of copies

20 |

160

Generation

Figure 7: Number of copies of different global optima of the bipolar function. There are 32 optima in this
function and all 32 are multiply represented at the end of the run.

6 What’s Next?

Binary problems with a fixed number of decision variables are a very interesting, difficult, and general
class of problems. However, many problems are defined in different domains such as vectors of real
numbers, program codes, communication networks, geometric shapes, and rules. More work must be
done in order to widen the applicability of the hierarchical BOA. There are two basic approaches to
extend the algorithm to different problem domains. The first approach is to map potential solutions
to binary strings of fixed length and use the original algorithm on a modified domain. To use the
above approach on some problems, discretization or bounds on the solution size and accuracy may
be necessary. For example, we would have to discretize vectors of real numbers before mapping them
onto a finite domain of fixed-length binary strings.

Another approach is to adapt model building and utilization to a new problem domain. One
must decide what class of distributions to use for each problem domain and how to learn and utilize
distributions of this class. However, such a modification may not be a straightforward one and the
applicability and efficiency of the algorithm may suffer.

Each approach has its advantages and disadvantages. Mapping solutions to fixed-length binary
strings allows us to use the same method to solve the new problem. We can rely on theory and expe-
rience from using the BOA on fixed-length binary problems. On the other hand, mapping solutions
from one space to another one may modify the problem difficulty (in either direction) and intro-
duce additional work for the user to define and implement the problem. Modifying model building
and utilization changes basic properties of the algorithm and may reduce the class of problems the
algorithm can solve efficiently and reliably.

18

Solving artificial hierarchical problems is very important for binding the class of problems the
algorithm is able to solve efficiently and reliably, but real-world problems must be tackled to show
that the approach is also able to solve difficult real-world problems. Many real-world problems are
simple and do not require such a powerful problem solver. On the other hand, some problems may
not be solvable in this fashion.

7 Summary and Conclusions

The paper presented the hierarchical Bayesian optimization algorithm which combines linkage learn-
ing, efficient representation of partial solutions, and powerful niching. Additionally, hierarchical trap
problems that are deceptive on each level of the hierarchy were designed. The hierarchical BOA was
tested on a number problems and the results confirmed that the algorithm scales up subquadratically
even on difficult hierarchical problems and is able to discover multiple optima of highly multimodal
problems. The empirical results were in agreement with recent theory.

The paper takes another important step toward increasingly competent genetic algorithms by
providing an algorithm that is able to solve problems on a single level as well as multiple levels.
It emphasizes the importance of solving separable problems on a single level by showing that we
need not modify much to successfully move from a single level to hierarchies. To solve hierarchically
decomposable problems quickly, accurately, and reliably, a combination of niching, linkage learning,
and efficient representation of partial solutions is necessary.

To learn the linkage, hierarchical BOA uses Bayesian networks to model promising solutions and
to generate the new ones. To efficiently represent partial solutions, decision graphs are used to rep-
resent local densities in a model. To assure powerful niching, the restricted tournament replacement
is used.

Separable deceptive problems of bounded difficulty are extended to multiple levels. The designed
hierarchical trap problems that are deceptive on each level are intractable by local search methods
and can be used as a benchmark for other optimization algorithms. Despite hierarchical problems
that are more difficult and challenging than separable problems, hierarchical BOA can solve these
problems very efficiently and reliably and it scales up subquadratically with the size of a problem.
Population sizing and convergence theory can be used to approximate the behavior of the algorithm
both on single-level and hierarchical problems.

Hierarchical BOA should be applicable to real-world problems without problem specific knowledge
ahead of time. This takes us closer to the promised land of robustness, that has long been associated
with GAs but rarely delivered.

8 Acknowledgments

The authors would like to thank Martin Butz, Erick Canti-Paz, Clarissa Van Hoyweghen, Fernando
Lobo, Franz Rothlauf, and Kumara Sastry for many useful discussions and valuable comments.

This work was sponsored by the Air Force Office of Scientific Research, Air Force Materiel
Command, USAF, under grant F49620-00-1-0163. Research funding for this work was also provided
by the National Science Foundation under grant DMI-9908252. Support was also provided by a grant
from the U. S. Army Research Laboratory under the Federated Laboratory Program, Cooperative
Agreement DAAL(01-96-2-0003. Martin Pelikan was partially supported by grant VEGA 1/7654/20
of the Slovak Grant Agency. The U. S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation thereon.

The views and conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or implied, of the
Air Force Office of Scientific Research, the Natiohhl Science Foundation, the U. S. Army, or the U.
S. Government.

References

Baker, J. E. (1985). Adaptive selection methods for genetic algorithms. In Eschelman, L. (Ed.),
Proceedings of the Sizth International Conference on Genetic Algorithms (pp. 101-111). San
Francisco, CA: Morgan Kaufmann.

Baluja, S. (1994). Population-based incremental learning: A method for integrating genetic search
based function optimization and competitive learning (Tech. Rep. No. CMU-CS-94-163). Pitts-
burgh, PA: Carnegie Mellon University.

Baluja, S., & Davies, S. (1997). Using optimal dependency-trees for combinatorial optimization:
Learning the structure of the search space. In Fisher, D. (Ed.), Proceedings of the 1jth Inter-
national Conference on Machine Learning (pp. 30-38). San Francisco: Morgan Kaufmann.

Booker, L. B. (1982). Intelligent behavior as an adaptation to the task environment. Doctoral
dissertation, The University of Michigan. (University Microfilms No. 8214966).

Bosman, P. A. (2000). Continuous iterated density estimation evolutionary algorithms within the
idea framework. Personal communication.

Bosman, P. A. N., & Thierens, D. (1999). Linkage information processing in distribution estimation
algorithms. In Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela, M.,
& Smith, R. E. (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference
GECCO0-99, Volume I (pp. 60-67). Orlando, FL: Morgan Kaufmann Publishers, San Fransisco,
CA.

Cavicchio, Jr., D. J. (1970). Adaptive search using simulated evolution. Doctoral dissertation,
University of Michigan, Ann Arbor, MI. (University Microfilms No. 25-0199).

Chickering, D. M., Heckerman, D., & Meek, C. (1997). A Bayesian approach to learning Bayesian
networks with local structure (Technical Report MSR-TR-97-07). Redmond, WA: Microsoft
Research.

Cohoon, J. P., Hegde, S. U., Martin, W. N., & Richards, D. (1987). Punctuated equilibria: A
parallel genetic algorithm. In Grefenstette, J. J. (Ed.), Proceedings of the Second International
Conference on Genetic Algorithms (pp. 148-154). Hillsdale, NJ: Lawrence Erlbaum Associates.

Collins, R. J., & Jefferson, D. R. (1991). Selection in massively parallel genetic algorithms. In
Belew, R. K., & Booker, L. B. (Eds.), Proceedings of the Fourth International Conference on
Genetic Algorithms (pp. 249-256). San Mateo: CA: Morgan Kaufmann.

Culberson, J. C. (1992). Genetic invariance: A new paradigm for genetic algorithm design. Un-
published manuscript.

Davidor, Y. (1991). A naturally occuring niche and species phenomenon: The model and first
results. In Belew, R. K., & Booker, L. B. (Eds.), Proceedings of the Fourth International
Conference on Genetic Algorithms (pp. 257-263). San Mateo, CA: Morgan Kaufmann.

De Bonet, J. S., Isbell, C. L., & Viola, P. (1997). MIMIC: Finding optima by estimating probability

densities. In Mozer, M. C., Jordan, M. I., & Petsche, T. (Eds.), Advances in neural information
processing systems, Volume 9 (pp. 424). The MIT Press, Cambridge.

De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive systems. Doctoral
dissertation, University of Michigan, Ann Arbor. (University Microfilms No. 76-9381).

Deb, K., & Goldberg, D. E. (1989). An investigation of niche and species formation in genetic func-
tion optimization. In Schaffer, J. D. (Ed.), Proceedings of the Third International Conference
on Genetic Algorithms (pp. 42-50). San Francisco, CA: Morgan Kaufmann.

20

Deb, K., & Goldberg, D. E. (1994). Sufficient conditions for deceptive and easy binary functions.
Annals of Mathematics and Artificial Intelligence, 10, 385—408.

Deb, K., Horn, J., & Goldberg, D. E. (1992). Multimodal deceptive functions (IliGAL Report No.
92003). Urbana, IL: University of Illinois at Urbana-Champaign.

Eldredge, N., & Gould, S. (1972). Punctuated equilibria: an alternative to phyletic gradualism.
San Francisco, CA: Freeman & Company.

Etxeberria, R., & Larranaga, P. (1999, March). Global optimization using Bayesian networks. In
Second Symposium on Artificial Intelligence (CIMAF-99) (pp. 332-339). Habana, Cuba.

Fonseca, C. M., & Fleming, P. J. (1993). Genetic algorithms for multiobjective optimization:
Formulation, discussion and generalization. In Forrest, S. (Ed.), Proceedings of the Fifth Inter-
national Conference on Genetic Algorithms (pp. 416-423). San Mateo, CA: Morgan Kaufmann.

Friedman, N., & Goldszmidt, M. (1999). Learning Bayesian networks with local structure. In
Jordan, M. I. (Ed.), Graphical models (1 ed.). (pp. 421-459). Cambridge, MA: MIT Press.

Geiger, D., & Heckerman, D. (1996). Beyond Bayesian networks: Similarity networks and Bayesian
multinets. Artificial Intelligence, 82, 45-74.

Goldberg, D. E. (1983). Computer-aided gas pipeline operation using genetic algorithms and rule
learning. Dissertation Abstracts International, 44 (10), 3174B. Doctoral dissertation, University
of Michigan.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Read-
ing, MA: Addison-Wesley.

Goldberg, D. E. (1997, November). The design of innovation: Lessons from genetic algorithms.
Unpublished manuscript.

Goldberg, D. E. (1998, June 15). Four keys to understanding building-block difficulty. Presented
in Projet FRACTALES Seminar at I.N.R.I.A. Rocquencourt, Le Chesnay, Cedex.

Goldberg, D. E., Korb, B., & Deb, K. (1989). Messy genetic algorithms: Motivation, analysis, and
first results. Complez Systems, 3(5), 493-530.

Goldberg, D. E., & Richardson, J. (1987). Genetic algorithms with sharing for multimodal function
optimization. In Grefenstette, J. J. (Ed.), Proceedings of the Second International Conference
on Genetic Algorithms (pp. 41-49). Hillsdale, NJ: Lawrence Erlbaum Associates.

Gorges-Schleuter, M. (1989). ASPARAGOS: An asynchronous parallel genetic optimization strat-
egy. In Schaffer, J. D. (Ed.), Proceedings of the Third International Conference on Genetic
Algorithms (pp. 422-428). San Mateo, CA: Morgan Kaufmann.

Grosso, P. B. (1985). Computer simulations of genetic adaptation: Parallel subcomponent inter-
action in a multilocus model. Unpublished doctoral dissertation, The University of Michigan.
(University Microfilms No. 8520908).

Harik, G. (1994, May). Finding multiple solutions in problems of bounded difficulty (IIiIGAL Report
No. 94002). Urbana, IL: University of Illinois at Urbana-Champaign.

Harik, G. (1999). Linkage learning via probabilistic modeling in the ECGA (IIiGAL Report No.
99010). Urbana, IL: University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms
Laboratory.

Harik, G. R., Lobo, F. G., & Goldberg, D. E. (1998). The compact genetic algorithm. In Proceedings

of the International Conference on Evolutionary Computation 1998 (ICEC ’98) (pp. 523-528).
Piscataway, NJ: IEEE Service Center.

21

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: University of
Michigan Press.

Hollstein, R. B. (1971). Artificial genetic adaptation in computer control systems. Doctoral disser-
tation, University of Michigan. (University Microfilms No. 71-23,773).

Horn, J. (1993). Finite Markov chain analysis of genetic algorithms with niching. In Forrest, S.
(Ed.), Proceedings of the Fifth International Conference on Genetic Algorithms (pp. 110-117).
San Mateo, CA: Morgan Kaufmann. Also TCGA No. 04447, IIliGAL Report Number 93002.

Horn, J., & Nafpliotis, N. (1993, July). Multiobjective optimization using the niched pareto genetic
algorithm (IIIGAL Report No. 93005). Urbana, IL: University of Illinois at Urbana-Champaign.

Mahfoud, S. W. (1992). Crowding and preselection revisited. In Manner, R., & Manderick, B.
(Eds.), Parallel Problem Solving from Nature, 2 (pp. 27-36). Elsevier Science.

Mauldin, M. L. (1984). Maintaining diversity in genetic search. In Brachman, R. J. (Ed.), Proceed-
ings of the National Conference on Artificial Intelligence (pp. 247-250). Austin, TX: William
Kaufmann.

Mengshoel, O. J., & Goldberg, D. E. (1999). Probabilistic crowding: Deterministic crowding with
probabilisitic replacement. In Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H., Honavar,
V., Jakiela, M., & Smith, R. E. (Eds.), Proceedings of the Genetic and Evolutionary Com-
putation Conference GECCO-99, Volume I (pp. 409-416). Orlando, FL: Morgan Kaufmann
Publishers, San Fransisco, CA.

Miihlenbein, H. (1991). Evolution in time and space-The parallel genetic algorithm. In Rawlins,
G. J. E. (Ed.), Foundations of Genetic Algorithms (pp. 316-337). San Mateo, CA: Morgan
Kaufmann.

Miihlenbein, H. (1997). The equation for response to selection and its use for prediction. Evolu-
tionary Computation, 5(3), 303-346.

Miihlenbein, H., Mahnig, T., & Rodriguez, A. O. (1998). Schemata, distributions and graphical
models in evolutionary optimization. Submitted for publication.

Miihlenbein, H., & Paa$}, G. (1996). From recombination of genes to the estimation of distributions
I. Binary parameters. In Eiben, A., Béck, T., Shoenauer, M., & Schwefel, H. (Eds.), Parallel
Problem Solving from Nature - PPSN IV (pp. 178-187). Berlin: Springer Verlag.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference.
San Mateo, California: Morgan Kaufmann.

Pelikan, M., & Goldberg, D. E. (2000a). A comparative study of scoring metrics in the Bayesian op-
timization algorithm: Minimum description length and Bayesian-Dirichlet. Unpublished tech-
nical report.

Pelikan, M., & Goldberg, D. E. (2000b). Genetic algorithms, clustering, and the breaking of sym-
metry (IliGAL Report No. 2000013). Urbana, IL: University of Illinois at Urbana-Champaign,
Illinois Genetic Algorithms Laboratory.

Pelikan, M., & Goldberg, D. E. (2000c). Hierarchical problem solving by the Bayesian optimiza-
tion algorithm (IliIGAL Report No. 2000002). Urbana, IL: University of Illinois at Urbana-
Champaign, Illinois Genetic Algorithms Laboratory.

Pelikan, M., Goldberg, D. E., & Canttu-Paz, E. (1998). Linkage problem, distribution estima-
tion, and Bayesian networks (IliGAL Report No. 98013). Urbana, IL: University of Illinois at
Urbana-Champaign, Illinois Genetic Algorithms Laboratory.

22

Pelikan, M., Goldberg, D. E., & Canti-Paz, E. (2000a). Bayesian optimization algorithm, popula-
tion sizing, and time to convergence (IIIiIGAL Report No. 2000001). Urbana, IL: University of
Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory.

Pelikan, M., Goldberg, D. E., & Canti-Paz, E. (2000b). Linkage problem, distribution estimation,
and Bayesian networks. Evolutionary Computation, 8(3), 311-341.

Pelikan, M., Goldberg, D. E., & Lobo, F. (2000). A survey of optimization by building and using
probabilistic models. Computational Optimization and Applications. In press.

Pelikan, M., Goldberg, D. E., & Sastry, K. (2000). Bayesian optimization algorithm, decision
graphs, and Occam’s razor (IlliIGAL Report No. 2000020). Urbana, IL: University of Illinois at
Urbana-Champaign, Illinois Genetic Algorithms Laboratory.

Pelikan, M., & Miihlenbein, H. (1999). The bivariate marginal distribution algorithm. In Roy, R.,
Furuhashi, T., & Chawdhry, P. K. (Eds.), Advances in Soft Computing - Engineering Design
and Manufacturing (pp. 521-535). London: Springer-Verlag.

Perry, Z. A. (1984). Experimental study of speciation in ecological niche theory using genetic
algorithms. Dissertation Abstracts International, 45(12), 3870B. (University Microfilms No.
8502912).

Schaffer, J. D. (1984). Some experiments in machine learning using vector evaluated genetic algo-
rithms. Doctoral dissertation, Vanderbilt University, Nashville, Tennessee. (University Micro-
films No. 85-22492).

Thierens, D., & Goldberg, D. E. (1993). Mixing in genetic algorithms. In Forrest, S. (Ed.), Pro-
ceedings of the Fifth International Conference on Genetic Algorithms (pp. 38-45). San Mateo,
CA: Morgan Kaufmann.

Watson, R. A. (2000). Analysis of recombinative algorithms on a non-separable building-block
problem. Foundations of Genetic Algorithms. In printing.

Watson, R. A., Hornby, G. S., & Pollack, J. B. (1998). Modeling building-block interdependency.
In Eiben, A. E., Bick, T., Schoenauer, M., & Schwefel, H.-P. (Eds.), Parallel Problem Solving
from Nature, PPSN V (pp. 97-106). Berlin: Springer Verlag.

Wright, S. (1968). Ewolution and the genetics of populations: a treatise. University of Chicago
Press.

23

