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Abstract 

Recently, there has been a growing interest in probabilistic model-building genetic algorithms (PMBGAs), 

which replace traditional variation operators of genetic and evolutionary algorithms by building and sampling 

a probabilistic model of promising solutions. In this paper we propose a PMBGA that uses edge histogram 

based sampling algorithms (EHBSAs) to solve problems with candidate solutions represented by permutations. 

Two sampling algorithms�the sampling without template (EHBSA/WO) and the sampling with template 

(EHBSA/WT)�are presented. The proposed algorithms are tested on several instances of the traveling sales-

man problem (TSP). The results show that EHBSA/WT works fairly well even with a small population size on 

all tested problem instances and that it outperforms popular two-parent recombination operators for permuta-

tions and other PMBGAs for permutation problems. Combining EHBSA with a simple local heuristic for 

solving TSP called 2-OPT improves the performance of the algorithm, enabling efficient solution to problems 

of hundreds of cities. Nonetheless, unlike most other TSP solvers, EHBSA is not limited to solving TSP in-

stances, but it can be applied to any problem defined on permutations. 

Key words: Probabilistic model-building genetic algorithms (PMBGAs), estimation of distribution 

algorithms (EDAs), permutation problems, edge histogram matrix, traveling salesman problem. 



1 Introduction 

Genetic Algorithms (GAs) (Holland 1975; Goldberg 1989) are widely used as robust black-box optimiza-

tion techniques applicable across a broad range of real-world problems, including parameter optimization, 

scheduling, design, and combinatorial optimization. GAs evolve a population of candidate solutions (indi-

viduals) to the given problem starting with a randomly generated population. Each iteration starts by creat-

ing a population of promising individuals using a selection operator, which favors high-quality solutions by 

making more copies of better solutions at the expense of the worse ones. New candidate solutions are gen-

erated by applying recombination and mutation operators to the selected population of solutions. Recombi-

nation creates new candidate solutions by combining bits and pieces of promising solutions, whereas muta-

tion creates new solutions by perturbing selected solutions slightly. Since both recombination and mutation 

introduce variation into the population of selected solutions, these operators are often called variation op-

erators. 

GAs should work well for problems that can be decomposed into sub-problems of bounded difficulty 

(Goldberg, 2002) and for problems where similar solutions are of similar quality. However, fixed, prob-

lem-independent variation operators are often incapable of effective exploitation of the selected population 

of high-quality solutions and the search for the optimum often becomes intractable (Thierens, 1995; Gold-

berg, 2002; Pelikan, 2002). One of the most promising research directions that focus on eliminating this 

drawback of fixed, problem-independent variation operators, is to look at the generation of new candidate so-

lutions as a learning problem, and use a probabilistic model of selected solutions to generate the new ones (Pe-

likan, Goldberg, & Lobo, 2002; Pelikan, 2002; Larrañaga & Lozano, 2002). The probabilistic model is ex-

pected to reflect the problem structure and, as a result, this approach might provide more effective exploitation 

of promising solutions than recombination and mutation operators in traditional GAs. The algorithms based on 

learning and sampling a probabilistic model of promising solutions to generate new candidate solutions are 

called probabilistic model-building genetic algorithms (PMBGAs) (Pelikan, Goldberg, & Lobo, 2002), estima-

tion of distribution algorithms (EDAs) (Muehlenbein & Paass, 1996), or iterated density estimation algorithms 

(IDEAs) (Bosman & Thierens, 2000). 

Most work on PMBGAs focuses on optimization problems where candidate solutions are represented by 

fixed-length vectors of discrete or continuous variables. However, for many combinatorial problems permuta-

tions provide a much more natural representation for candidate solutions. Despite the great success of 

PMBGAs in the domain of fixed-length discrete and continuous vectors, only few studies can be found on 

PMBGAs for permutation and scheduling problems permutations (Bosman & Thierens, 2001, 2002; Robles et 



al., 2002), and even these studies take an indirect approach of mapping permutation problems to fixed-length 

vectors of discrete or continuous variables, what in some cases necessitates the use of repair operators to cor-

rect invalid permutations. 

This paper introduces a promising approach to learning and sampling probabilistic models for permutation 

problems using edge histogram models. Edge histogram models can be used to directly encode and sample 

probability distributions over permutations without requiring a transformation of permutations to another do-

main or a repair operator. The results presented here indicate that using edge histogram models within the 

PMBGA framework provides competitive results on several benchmark instances of the traveling salesman 

problem (TSP). Nonetheless, the methods proposed here are not limited to TSP like most other TSP solvers 

and specialized variation operators are. As a result, this work provides a promising direction for solution of 

any problem that can be formulated within the domain of fixed-length permutations; flow shop scheduling is 

an example of such a problem as described in Tsutsui & Miki, 2002. 

The paper starts with a brief description of PMBGAs with the focus on PMBGAs for permutation prob-

lems. Section 3 describes the two proposed EHBSAs. Section 4 provides the empirical analysis of EHBSAs on 

several benchmarks of TSP. Section 5 shows how EHBSA can be combined with local search to improve its 

performance on TSP, and presents empirical results of the hybrid method that combines EHBSA with a simple 

local TSP heuristic called 2-OPT. Finally, Section 5 summarizes and concludes the paper. 

2 Probabilistic Model-Building Genetic Algorithms 

Probabilistic model-building genetic algorithms (PMBGAs) evolve a population of candidate solutions to the 

given problem by building and sampling a probabilistic model of promising solutions. PMBGAs start with a 

random population of candidate solutions (individuals). Each iteration of PMBGAs starts by selecting better 

individuals from the current population. Next, the probability distribution of the selected population of indi-

viduals is estimated. New individuals are then generated according to this estimate, forming the population of 

candidate solutions for the next generation. The process is repeated until the termination conditions are satis-

fied. 

As mentioned above, most work on PMBGAs focuses on parameter optimization for problems defined 

over fixed-length vectors of discrete or real-valued variables (see Pelikan (2002), Pelikan et al. (2002), and 

Larrañaga & Lozano (2002) for an overview of these methods), but only few studies can be found that focus 

on optimization of problems with solutions represented by permutations. Bosman & Thierens (2001, 2002) use 

random keys to represent permutations together with a marginal product factorization to estimate the continu-

ous distribution of random keys. Robles, Miguel, and Larrañaga (2002) also use random keys to enable the use 



of PMBGAs from continuous parameter optimization in solving permutation problems. Additionally, they use 

discrete PMBGAs in combination with the all-time-modification technique for repairing disrupted permuta-

tions. 

The next section describes edge histogram models that can be used to model and sample permutations 

within the PMBGA framework. Subsequently, the proposed methods are tested on a number of instances of 

the traveling salesman problem (TSP) with and without an additional heuristic 2-OPT. 

3 Edge Histogram Based Sampling Algorithm (EHBSA)

This section describes the edge histogram based sampling algorithm (EHBSA) and its use within the PMBGA 

framework for (1) modeling promising solutions and (2) generating new solutions by simulating the learned 

model. 

3.1 Basic Description of the Algorithm

An edge is a link or connection between two nodes. A set of edges that creates a path in the graph that includes 

all nodes can be used as an alternative representation of a permutation; the first node of the path will be the 

first element of the permutation, while the remaining elements in the permutation can be obtained by follow-

ing the remainder of the path until the last node of the path is reached. Some crossover operators, such as Edge 

Recombination (ER) (Whitley, Starkweather, & Fuquay, 1989) and enhanced ER (eER) (Starkweather et al., 

1991)�which can both be used in traditional two-parent recombination of conventional GAs�use the 

edge-based representation of permutations for only the two parents strings. The basic idea of our approach��

the edge histogram based sampling algorithm (EHBSA)��is to collect and exploit information about the edges 

globally across the entire population of high-quality permutations from the selected set of solutions. 

EHBSA starts by generating a random permutation for each individual population of candidate solutions. 

Promising solutions (permutations) are then selected using any popular selection scheme based on their quality 

computed using the problem-specific evaluation function that defines the problem. Next, an edge histogram 

matrix (EHM) for the selected solutions is constructed (see Section 3.2). New solutions are then generated by 

sampling the edge histogram matrix (see Section 3.3). The new solutions replace some of the old ones and the 

process is repeated until the termination criteria are met. EHBSA can thus be seen as a permutation version of 

the PMBGA based marginal histogram models proposed by Tsutsui, Pelikan, & Goldberg (2001). 

3.2 Learning Edge Histogram Matrix  

Let the permutation represented by the kth individual in population P(t) at generation t be denoted by 
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and ε > 0 biases the sampling toward random permutations and it can thus be seen as a form of mutation. To 

use a comparable pressure toward random permutations for all problems and parameter settings, ε should be 

proportional to the expected value of et
i,j. Since the average of elements et

i,j for i≠j in EHMt is 2LN/(L2-L) = 

2N/(L–1), we get
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where Bratio (Bratio > 0) or the bias ratio is a constant related to the pressure toward random permutations. A 

smaller value of Bratio reflects the real distribution of edges in the parent population, whereas a bigger value of 

Bratio will allow infrequent addition of new edges (see Section 3.3). An example of EHMt is shown in Figure 1. 
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Figure 1. An example of a symmetric edge histogram matrix for N = 5, L = 5, Bratio = 0.04 

Although the edge histogram matrix defined above is symmetric (i.e., ei,j = ej,i ) and it is thus applicable 

only to problems where the orientation of edges does not matter (e.g., to symmetric TSP instances), an asym-

metric edge histogram matrix can be defined for problems where the orientation of edges does matter (e.g., for 

asymmetric TSP and flow shop scheduling) An asymmetric EHMt can be defined analogically to the symmet-

ric matrix EHMt defined Eq. 1, but only edges from i to j will be counted in computing et
ij.

Time complexity of learning the edge histogram matrix is lower-bounded by a product of the number N of 

individuals used to learn the matrix and the permutation length L. Time complexity of the learning is also 



lower-bounded by the number of elements in EHMt. In the steady-state evolutionary model used in this paper, 

the initial computation of the edge histogram matrix (EHM0) takes O(N L + L2) time steps, whereas the com-

plexity of updating the edge-histogram model in subsequent iterations can be bounded by O(L). In the genera-

tional evolutionary model, learning the edge histogram matrix in each generation would take O(N L) steps. 

The following subsection describes how EHMt can be used to sample new solutions using two sampling 

procedures.
 

3.3 Sampling Algorithms

In this subsection, we describe two sampling algorithms for sampling the edge histogram matrix EHMt: (1) the 

edge histogram based sampling algorithm without template (EHBSA/WO), and (2) the edge histogram based 

sampling algorithm with template (EHBSA/WT). 

3.3.1 Edge histogram based sampling algorithm without template (EHBSA/WO) 

Let us denote the elements of the permutation to be sampled by c[i] for i∈{0, 1, …, L-1}. EHBSA/WO starts 

by randomly selecting the initial element of the new permutation (denoted by c[0]). The sampling continues 

recursively using a variant of the roulette-wheel selection (Goldberg, 1989). Let us assume that the last ele-

ment of the new permutation that we have generated is c[i] (that means that we have generated i+1 elements so 

far). The new element c[i+1] is set to j (we restrict potential values of j so that j≠c[k] for all k∈{0, 1, …, i}; 

otherwise, the new edge would create a cycle) with a probability proportional to the element et
c[0],j of the given 

edge histogram matrix EHMt. The sampling continues until the entire permutation has been generated. Figure 

2 shows the schematic description of the edge histogram based sampling algorithm without template 

(EHBSA/WO). 

Figure 2. Edge histogram based sampling algorithm without template (EHBSA/WO) 

1. Set the position counter p← 0.  

2. Obtain first node c[0] randomly from [0, L–1].  

3. Construct a roulette wheel vector rw[] from EHMt as rw[j]← et
c[p],j (j=0, 1, .., L–1). 

4. Set to 0 previously sampled nodes in rw[] (rw[ c[i] ]← 0 for i =0, .., p).

5. Sample next node c[p+1] with probability ∑
−

=

1

0 ][/][ L

j jrwxrw using roulette wheel rw[]. 

6. Update the position counter p← p+1. 

7. If p<L–1, go to Step 3. 

8. Obtain a new individual string c[]. 



The EHBSA/WO sampling described above is only applicable to problems where the absolute position of 

each node in a permutation string does not matter (for example, TSP). Slight modifications are required to 

apply EHBSA/WO to problems where the absolute position of each node in a permutation string does matter 

(for example, scheduling). Note that EHBSA/WO is similar to the sampling in Ant Colony Optimization 

(ACO) (Dorigo, Maniezzo, & Colorni, 1996). The most apparent difference between EHBSA and ACO is in 

the way the algorithms bias the search toward high-quality solutions. Like most other evolutionary algorithms, 

EHBSA uses a selection operator to select promising solutions, which are in turn used to create a model for 

generating new candidate solutions. On the other hand, in ACO the generation of new solutions is guided by 

the intensity of pheromone trails in the search space, and ACO thus favors high-quality solutions by specifying 

an update rule for pheromone trails that ensures that the areas of the search space that are likely to provide 

better solutions contain pheromone trails of higher intensity (this is ensured by developing a specific update 

rule for each class of problems). An important feature of EHBSA is that EHBSA does not need a new update 

rule for a new problem, but it can approach any problem defined on permutations directly without any modifi-

cations. For a more detailed discussion on the relationship between EHBSA and ACO, please see Tsutsui 

(2003), who also describes an approach to use some of the techniques used in EHBSA to improve ACO. 

Time complexity of sampling one permutation from the edge histogram matrix can be bounded by O(L2). 

3.3.2 Edge histogram based sampling algorithm with template (EHBSA/WT) 

EHMt described in Section 3.2 does not consider interactions between edges, which can make the sampling 

rather ineffective in practice. EHBSA/WT attempts to improve the sampling by using a template. EHBSA/WT 

starts by selecting a template individual from the selected population P(t). We use a simple strategy for select-

ing the template individual and set the template to a random individual from P(t) (note that all individuals in 

P(t) have gone through the process of selection, so their quality can be assumed to be relatively high in com-

parison with that of a fully random individual). A new individual is created by copying a part of the template 

directly and generating the remaining positions according to the edge histogram matrix learned from the 

population of promising solutions. Other strategies could be used for selecting templates; for example, the best 

individual in the current population could be used as a template. It is advantageous, however, to use multiple 

templates in generating the new population of permutations, because using a single template for all new indi-

viduals would make the effects of recombination more local. 

A crucial question when using a template to sample new permutations is how to determine the positions of 

permutation elements or nodes that are to be copied from the template and the positions of nodes that are go-

ing to be generated anew. To ensure robustness across a wide spectrum of problems, it should be advantageous 



to introduce variation both in the positions of permutation elements that are to be generated anew as well as in 

the number of these elements.  

To choose positions to generate anew, we use a simple method inspired by n-point crossover of simple GAs. 

In EHBSA/WT/n, the template permutation is first mapped onto a circle so that the last position is followed by 

the first one. To generate each new individual, n>1 positions in the template are selected at random, dividing 

the template into n segments of variable length. The segment the elements of which are to be generated anew 

is chosen randomly out of these n segments; all remaining elements are copied directly from the template. 

Randomness in generating cut positions and choosing one of these segments introduces variation in segment 

positions and lengths of elements that are going to be generated anew. The probability distribution of segment 

lengths can be controlled by n; for n=2, segment lengths are distributed uniformly, but as n grows, shorter seg-

ment lengths become dominant (see Section 3.4 for a more detailed discussion of this issue). Again, other 

methods can be used to select positions that are to be generated anew. 

Figure 3 shows an example of EHBSA/WT/3 where 3 cut points are used. In this example, three segments, 

segment1, segment2 and segment3 are generated by cut points cut[0], cut[1] and cut[2], and segment1 is cho-

sen for sampling nodes. Nodes of the new string in segment0 and segment2 (before cut[1] and after cut[2]) are 

the same as the nodes of the template. New nodes are sampled for only segment1 (from cut[1] up to, but not 

including, cut[2]) based on the EHMt using a similar algorithm to that in EHBSA/WO. 

cut[0] cut[1] cut[2]

template T[]

new string c[]

sampling
EHMt

segment0 segment1 segment2

cut[0] cut[1] cut[2]

template T[]

new string c[]

sampling
EHMt

segment0 segment1 segment2

 

 

Figure 3. An example of EHBSA/WT/3 

Figure 4 shows a schematic description of the edge histogram based sampling algorithm with template and 

n cut points (EHBSA/WT/n).



Figure 4. Edge histogram based sampling algorithm with template (EHBSA/WT) 

Time complexity of EHBSA/WT with respect to the number of elements in a permutation must be at least 

O(L), but at most O(L2). Where the actual complexity lies depends on the chosen distribution of segments to 

generate anew; more specifically, the actual complexity depends on the length of the segments that are to be 

generated anew. There are two effects of modifying the length of the segments to generate. On one hand, 

shortening the segments increases the speed of sampling. On the other hand, shortening the segments also de-

creases the rate at which the sampling explores new regions of the search space. Since in EHBSA/WT/n, the 

average length of segments that are resampled decreases with the number n of cut-points (see Subsection 3.4), 

the time complexity of sampling a new solution also decreases with n. More specifically, the time complexity 

is proportional to L2/n.

The following section describes experimental methodology and results on several benchmark instances of 

TSP. The section is followed by a discussion on hybridization of EHBSA, and experimental results of apply-

ing a hybrid consisting of EHBSA and 2-OPT to several larger TSP instances. 

3.4 Distribution of Segment Lengths using EHBSA/WT/n

Above we have mentioned that the distribution of segment lengths to be generated anew depends on the num-

ber of cut points. This section looks at the dependency between n and the distribution of segment lengths in 

somewhat more detail. 

The string length L and each cut point are integer values. But for simplicity, here we assume L and each cut 

point cut[l] (l = 0, 1, …, n�1) to take continuous values. There is an edge between the last node and the first 

node in a string. Thus, we represent a string as a continuous circle of length L as shown in Figure 5. Then, the 

length of a segment can be calculated as a continuous value. Without loss of generality, we fix the cut point 

cut[0] to be located at the origin, and consider the segment between cut point cut[0] and cut point cut[1] as a 

1. Choose a template T[] from P(t) . 

2. Obtain sorted cut point array cut[0], cut[1], .., cut[n–1] randomly. 

3. Choose a cut point cut[l] by generating random number l∈ [0, n–1]. 

4. Copy nodes in T[] to c[] from after cut[(l+1) mod n] and before cut[l]. 

5. Set the position counter p← (cut[l] – 1 + L) mod L.

6. Construct a roulette wheel vector rw[] from EHMt as rw[j]← et
c[p],j (j=0, 1, .., L–1). 

7. Set to 0 copied and previously sampled nodes in rw[] (rw[c[i]]← 0 for i = cut[(l+1) mod n], .., p).

8. Sample next node c[(p+1) mod L] with probability ∑
−

=

1

0 ][/][ L

j jrwxrw using roulette wheel rw[]. 

9. Update the position counter p← (p+1) mod L.

10. If (p+1) mod L≠ cut[(l+1) mod n], go to Step 6. 

11. Obtain a new individual string c[]. 



typical random segment, where cut point cut[1] is defined as the nearest cut point in clockwise rotation to cut 

point cut[0] (see Figure 4). Let F(x) and f(x) be the probability distribution function and the probability density 

function of the length of the segment described above, respectively. Let F '(x) be the probability that all cut 

points cut[l] (l = 1, 2, …, n�1), excluding cut[0], are greater than x. The probability that a cut point cut[l] (l ≠

0) is greater than x is 1�x/L. So, F '(x) is obtained as 
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Figure 5. Calculation of length a segment formed by n cut points



Figure 6 shows the probability density function f(x) of segment lengths for EHBSA/WT/n for n=2,3, and 4. 

For n = 2, f(x) is uniformly distributed on [0, L]. Thus, the length of a segment to be sampled in EHBSA/WT/2 

is uniformly distributed on [0, L]. When the length of the segment is small, the EHBSA/WT/2 samples a small 

number of nodes, performing a kind of local search improvement over the template individual. On the other 

hand, when the length is large, the EHBSA/WT/2 samples a large number of nodes, performing a larger 

change to the template. Due to the uniform distribution of segment lengths on [0, L], EHBSA/WT/2 balances 

global and local improvements. 

For n > 2, short segments are more likely to occur. As a result, a smaller value of n should work well for 

problems with a smaller numbers of cities, and a larger number of n work well with problems with a larger 

numbers of cities; i.e., gr24: n = 2, gr48: n = 3, and pr76: n = 5. 
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Figure 6. Probability density function f(x) of segment lengths for EHBSA/WT/n

4 Empirical Study 

This section applies EHBSA/WO and EHBSA/WT to several benchmark instances of the traveling salesman 

problem (TSP), which is one of the most popular permutation problems. However, note that the EHBSA is not 

limited to TSP, because it uses no specific features of TSP; EHBSA is not given the locations of cities in TSP, 

it does not assume that there is a proper metric defined to compute the distance between the pairs of cities, and 

it does not assume that the problem can be mapped to an instance of TSP. This important feature distinguishes 

EHBSA from most other methods that can be used to solve TSP.



4.1 Experimental Methodology

4.1.1 Evolutionary models 

This section describes evolutionary models for all methods included in our comparison, i.e. EHBSA/WT, 

EHBSA/WO, and two-parent recombination operators. All models are based on the steady-state scheme. 

(1) Evolutionary model for EHBSA/WT

Let the population size be N, and let it, at time t, be denoted by P(t). The population P(t+1) is produced as fol-

lows (see Figure 7):  

1. Edge histogram matrix EHMt (see Subsection 3.2) is computed from P(t)

2. A template individual T[] is selected from P(t) randomly. 

3. EHBSA/WT (see Subsection 3.3.2) is executed using EHMt and T[] to generate a new individual c[]. 

3.The new individual c[] is evaluated. 

4. If c[] is better than T[], then T[] is replaced with c[], otherwise the population remains unchanged, form-

ing P(t+1).
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Figure 7. Evolutionary model for EHBSA/WT 

 

(2) Evolutionary model for EHBSA/WO

The evolutionary model for EHBSA/WO is similar to the model for EHBSA/WT, except that EHBSA/WO 

does not use a template T[]. The new string c[] is compared to a randomly selected individual i[] in P(t), and if 

c[] is better than i[], i[] is replaced with c[]; otherwise, the population remains unchanged. 



(3) Evolutionary model for two-parent recombination operators

To compare the performance of the proposed methods with the performance of traditional two-parent recom-

bination operators, we used the same steady-state scheme for two-parent recombination operators as well and 

after selecting and recombining two parents, one of the two new offspring is incorporated into the original 

population. This scheme was previously used in the GENITOR algorithm (Whitley, 1989). In our generational 

model, two parents are selected from P(t) randomly. No bias is used in this selection. Then we apply a recom-

bination operator to produce one child. This child is compared with its parents. If the child is better than the

worst parent, then the parent is replaced with the child. The selection pressure thus comes into play via re-

placement, similarly as in the deterministic crowding (Mahfoud, 1992) and restricted tournament selection 

(RTS) (Harik, 1995). 

4.1.2 Test suite and performance measures 

We have tested EHBSA on the Traveling Salesman Problem (TSP), a typical, well-known optimization prob-

lem in permutation representation domain. The following benchmark instances of TSP have been used in our 

empirical study: 24 cities gr24, 48 cities gr48, and 76 cities pr76. The gr24 and gr48 are used in the study of 

TSP with EDA in Robles et al. (2002). We have compared EHBSA with popular order-based recombination 

operators, namely, the order crossover OX (Oliver, Smith, & Holland, 1987), the enhanced edge recombina-

tion operator eER (Starkweather et al., 1991), and the partially mapped crossover (Goldberg, 1989). We have 

also compared EHBSA with the results presented in Robles et al. (2002) on gr24 and gr48. Our study focused 

on the effects of recombination; that is why we did not include mutation or other local operators in our ex-

periments. Incorporating local search is discussed in the next section, where a hybrid method is described that 

incorporates a popular local heuristic 2-OPT into EHBSA and other compared algorithms to improve solutions 

locally. Using the hybrid method is shown to improve the efficiency of the search rapidly.  

Note that the comparisons presented in this paper are only illustrative, and are presented to indicate that the 

proposed PMBGA with EHBSA sampling might be a promising approach to solving challenging permutation 

problems and that the problem instances tested here are not trivial; however, an in-depth comparison with 

state-of-the-art methods for solving TSP must be done to determine the advantages and disadvantages of using 

EHBSA compared to other promising approaches for solving this class of problems. Furthermore, the applica-

tion of EHBSA is not limited to TSP, because EHBSA does not exploit specific properties of TSP, such as the 

geographical location of the cities and the properties of distance metrics used to evaluate candidate solutions. 

Considering TSP as a black-box optimization problem puts EHBSA in a slightly more difficult position com-

pared to most other TSP solvers. 



Ten runs were performed for each TSP instance and each parameter setting. Each run was terminated ei-

ther when the optimal tour was found, when the population was converged, or when the number of evaluations 

reached Emax Values of Emax were 50000, 500000, and 1000000 for gr24, gr48, and pr76, respectively. Popula-

tion sizes of 60, 120, 240 were used for EHBSA; for other algorithms, we used additional two population sizes 

of 480 and 960. The bias ratio Bratio from Eq. 3 is set to 0.005 for all experiments. Determining an optimal 

value of this parameter is rather difficult and it remains an important topic for future research, but from our 

experience EHBSA seems to be robust with respect to the choice of this parameter. 

We evaluated the performance of the different algorithms by measuring the following quantities: 

� #OPT, the number of runs in which the algorithm succeeded in finding the optimal tour, 

� ANE, the average number of evaluations to find the global optimum in those runs where it did find 

the optimum, 

� STD, the standard deviation of the number of evaluations until the global optimum was found, and 

� Aver, the average length of the best solution over the ten runs. 

4.2 Experimental Results

Results on gr24 are shown in Table 1. EHBSA/WO has found the optimal tour in 8, 8, and 10 runs (out of 10 

total runs) with N = 60, 120, and 240, respectively. On the other hand, EHBSA/WT/n has found the optimum 

tour in all 10 runs for all parameter settings used except for EHBSA/WT/4 with N=60. The ANEs of 

EHBSA/WT/2 and EHBSA/WT/3 was 10713, and 9845, respectively, indicating good performance. The re-

sults show that the performance of EHBSA/WT is much better than that of EHBSA/WO.  

From other operators, eER showed best performance. The eER with N = 240, 480, and 960 found the op-

timal tour 10 times and the ANE with N = 240 was 13394, which is a little larger than ANE for EHBSA/WT/n

with N = 60. OX showed worse performance than eER. PMX showed worse performance than both eER and 

OX.  

Comparing the performance of EHBSA/WT with that of other operators, EHBSA/WT is slightly better 

than eER and it is significantly better than OX and PMX. One big difference between EHBSA/WT and eER is 

that EHBSA/WT requires a smaller population size to work than eER. For gr24, only one PMBGA presented 

in Robles et al. (2002) was able to find the optimal tour (with population size N=1000) without the use of local 

search, which indicates much worse performance of those methods compared to practically any variant of 

EHBSA tested here. 



Table 1. Results of gr24 

#O
P

T
ANE STD Aver

#O
P

T

ANE STD Aver

#O
P

T

ANE STD Aver

#O
P

T

ANE STD Aver

#O
P

T

ANE STD Aver

WO 8 17359 10996 1275 8 19608 2436 274 10 38929 4228 1272

WT/2 10 10713 7419 1272 10 15472 2289 1272 10 29454 4095 1272

WT/3 10 9845 1745 1272 10 16016 2276 1272 10 30835 2737 1272

WT/4 9 11320 3349 1272 10 19015 3351 1272 10 33999 3864 1272

WT/5 10 13186 1726 1272 10 18327 3380 1272 10 38676 5498 1272

0 - - 1345 1 22449 0 1303 4 34140 3793 1295 1 48674 0 1301 0 - - 1484

1 4738 0 1299 7 6237 654 1276 10 13394 1726 1272 10 23785 1338 1272 10 42767 2404 1272

0 - - 1492 0 - - 1414 2 23191 1798 1341 1 49442 0 1316 0 - - 1572

#OPT and ANE are not available, best length = 1272 with EMNA, Aver = 1285 with EMNA*

Optimum: 1272

E max = 50000

* Best data without heuristic using discrete EDA. Maximum number of evaluations is 50000.

(Robles
et al.,

E
H

B
S

A

Model

OX

eER

PMX

Population Size

96012060 240 480

Results on gr48 are shown in Table 2. EHBSA/WO could not find the optimal tour for gr48, which indi-

cates bad scalability of the algorithm. On the other hand, EHBSA/WT/n found the optimum tour in all 10 runs 

for all parameter settings except for EHBSA/WT/2 with N = 60. The ANEs for EHBSA/WT/3 and 

EHBSA/WT/5 were 64541 and 76552, respectively, indicating good performance. Thus, similarly as for gr24, 

the results indicate that the performance of EHBSA/WT is better than that of EHBSA/WO.  

Other operators showed again worse performance than EHBSA/WO. From other operators, eER ranked 

the best, OX ranked the second best, whereas the performance of PMX was again the worst. The best #OPT of 

eER is 5 with N = 960 and the ANE for this case is 166286, which is much larger than EHBSA/WT/n. PMX 

could not find the optimal tour. The results presented in Robles et al. (2002) indicate that all PMBGAs pro-

posed in that study performed much worse than EHBSA/WT/n, because they have failed to find the optimal 

tour for gr48 without the use of local search in all the runs. 

Table 2. Results of gr48 

#O
PT ANE STD Aver

#O
PT ANE STD Aver

#O
PT ANE STD Aver

#O
PT ANE STD Aver

#O
PT ANE STD Aver

WO 0 - - 5129 0 - - 5093 0 - - 5511

WT/2 8 109304 54760 5048 10 144032 29115 5046 10 256733 31573 5046

WT/3 10 64541 15100 5046 10 101336 10968 5046 10 215003 28109 5046

WT/4 10 76552 39570 5046 10 132005 40928 5046 10 227231 38228 5046

WT/5 10 95896 39191 5046 10 183356 29095 5046 10 287050 38949 5046

0 - - 5527 0 - - 5268 0 - - 5200 1 162154 0 5099 2 287852 6706 5082

0 - - 5653 0 - - 5233 0 - - 5098 2 95075 4168 5072 5 166286 4932 5058

0 - - 8285 0 - - 7374 0 - - 6859 0 - - 6116 0 - - 5860

Optimum: 5046

E max = 500000

* Best data without heuristic using discrete EDA. Maximum number of evaluations is 50000.

PMX
(Robles
et al.,

E
H

B
S

A

OX

eER

Model

ANE is not available, best length = 5122, Aver = 6717 with MIMIC*

Population Size

60 120 240 480 960



Results on pr76 are shown in Table 3. EHBSA/WO could not find the optimum tour in pr76, which con-

firms bad scalability of this variant of EHBSA. On the other hand, EHBSA/WT/n found the optimal tour in 

almost all cases. With N = 60, EHBSA/WT/2, 3, 4, and 5 found the optimal tour 4, 4, 9, and 10 times, respec-

tively. With N = 120, EHBSA/WT/2, 3, 4, and 5 found the optimal tour 9, 9, 9, and 10 times, respectively, 

showing the best performance. Thus, we can see the performance of EHBSA/WT is much better than the per-

formance of EHBSA/WO in this experiment. From other operators, only eER was able to find the optimal tour, 

what happened only in one run with N = 480 and and in 3 runs for N = 960, showing worse performance than 

EHBSA/WT. OX and PMX could not find the optimal tour. There are no experimental results of applying 

PMBGAs from Robles et al. (2002) to pr76, so the performance of EHBSA cannot be compared to any of 

those methods. 

Table 3. Results of pr76 

#O
PT ANE STD Aver

#O
PT ANE STD Aver

#O
PT ANE STD Aver

#O
PT ANE STD Aver

#O
PT ANE STD Aver

WO 0 - - 119136 0 - - 128208 0 - - 142206

WT/2 4 360128 180323 108352 9 457147 65821 108174 7 871319 55042 108201

WT/3 4 248091 57073 108385 9 472719 63530 108171 8 853801 77162 108201

WT/4 9 341482 139089 108247 9 607544 146197 108247 0 - - 108496

WT/5 10 494674 85334 108159 10 797963 121591 108159 0 - - 108807

0 - - 129603 0 - - 121642 0 - - 116591 0 - - 113412 0 - - 112259

0 - - 142003 0 - - 122217 0 - - 111839 1 179675 0 109119 3 394887 22321 108507

0 - - 236827 0 - - 213528 0 - - 187601 0 - - 164883 0 - - 158515

Optimum: 108159

E max = 1000000

OX

eER

PMX

E
H

B
S

A

Model

Population Size

60 120 240 480 960

 

 

5 Improving Performance of EHBSA With Local Search

Similarly as for other optimization problems and recombination-based optimizers, using local search for im-

proving solutions locally as the search progresses can significantly improve the performance of EHBSA. In 

this section we show an example of such a hybrid approach, where EHBSA is combined with a simple local 

heuristic for improving TSP solutions called 2-OPT. The section first describes the basic procedure of 2-OPT 

and how 2-OPT can be incorporated into EHBSA. Next, the section presents promising results of applying the 

hybrid method EHBSA+2-OPT to several larger instances of TSP and compares these results with those ob-

tained by hybridizing other techniques included in the comparison. 



5.1 Combining EHBSA with 2-OPT

2-OPT proceeds by checking pairs of nonadjacent edges in a given tour, and computing the improvement 

in the tour length after rearranging these pairs of edges by exchanging the terminal nodes of the two edges in 

each pair as shown in Figure 8. If no pair of edges can be rearranged to improve the current tour, the algorithm 

is terminated. Otherwise, the pair of edges that improves the current tour the most is rearranged, and the algo-

rithm is executed again. 

Figure 8. An example of one step of 2-OPT local search improving the total cost of the tour in TSP. 

Since there are L edges for a tour of length L, checking all pairs of edges can be done in O(L2) steps. De-

termining an upper bound on the number of passes through all edges until no more improvement is possible is 

more difficult; a conservative bound would assume that all pairs of edges can be rearranged, but in practice no 

more than L improvements can be expected to take place, yielding a bound O(L3). 

In EHBSA we use 2-OPT to improve every newly generated solution. Applying the 2-OPT heuristic to 

each new solution generated by EHBSA thus increases the computational cost of generating the new solution 

from O(L2) to O(L3).

5.3 Empirical Results for EHBSA/WT with 2-OPT 

In the experiments presented in this section, the maximum number of evaluations is set to 100,000 for all 

tested TSP instances. The remaining settings are the same as those for the experiments presented earlier in the 

paper. 

The results for a 226-city problem pr226 are shown in Table 4. In all cases, EHBSA/WT shows very good 

performance. Already with populations of size N=15, EHBSA/WT converges to the optimum in 7 to 9 runs, 

depending on the number of cut points. For the populations of N=30 and more, EHBSA/WT converges to the 

optimum in all 10 runs. The average number of evaluations until convergence to the optimum is small in all 

cases, and it increases with the population size. Note that the number of evaluations for solving the 226-city 



problem with a hybrid EHBSA+2-OPT is lower than that for solving the 24 city problem with pure EHBSA; 

using local search thus clearly improves the performance and reliability of EHBSA as was expected. 

On the other hand, other recombination operators perform rather poorly. OX is not able to find the optimal 

tour in any of the 10 runs with N=15, it succeeds in 6 out of the 10 runs with N=30, and only for populations 

N=60 and more the convergence with OX becomes more reliable, yielding success in at least 8 or 9 out of 10 

runs. Extended ER (eER) performs even worse than OX, yielding only a few successful runs for N=30 and 

N=60, while achieving more reliable convergence only for population sizes N=240 and more. The perform-

ance of PMX is similar to that of OX. Comparing the population sizes for the reliable parameter settings re-

veals that EHBSA perform best out of all tested algorithms, OX and PMX are second best, and eER performs 

worst. 

Table 4. Results for pr226. 

#O
P

T

ANE STD Aver

#O
P

T

ANE STD Aver
#O

P
T

ANE STD Aver

#O
P

T

ANE STD Aver

WT/2 8 514 138 80393 10 877 138 80369 10 1711 92 80369

WT/3 7 692 121 80369 10 1076 121 80369 10 1943 283 80369

WT/4 9 816 192 80369 10 1362 192 80369 10 2456 374 80369

WT/5 9 911 189 80369 10 1534 189 80369 10 2669 567 80369

0 - - 80536 6 921 383 80424 9 2429.1 753 80369 8 3115 753 80370

0 - - 80475 0 - - 80388 2 1254.5 113 80375 4 2430 531 80372

1 578 0 80516 2 822 339 80389 4 1688.5 138 80380 9 3345 638 80369

WT/2

WT/3

WT/4

WT/5

10 5613 1321 80370 10 9850.3 1345 80369 10 18610 1798 80369

9 4135.4 826 80369 9 8274 1542 80369 10 11190 2705 80369

10 5388 578 80369 10 9182.9 1390 80369 10 17242 2482 80369

Optimum: 80369
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Table 5 shows that on the 318-city problem lin318, EHBSA/WT again proves its robust and scalable 

performance by reaching the optimum reliably even with small populations of N=15 individuals. The num-

ber of evaluations increases compared to the 226-city problem, but it is still smaller than that for the 24-city 

problem without the local search. This reconfirms the advantages of using local search in combination with 

a recombination-based method EHBSA/WT. The performance of OX and PMX decreases compared to the 

226-city TSP, but for some settings these operators yield comparable performance to EHBSA with some 

settings. However, it seems that this TSP instance is still relatively easy for OX and PMX. Extended ER 

performs again worst of all compared methods. 

 

 



Table 5. Results for lin318 

#O
PT ANE STD Aver

#O
PT ANE STD Aver

#O
PT ANE STD Aver

#O
PT ANE STD Aver

WT/2 8 7133 2821 42046 10 10718 7419 42029 10 10004 4808 42029

WT/3 10 11561 5031 42029 10 7648 965 42029 10 20679 4866 42029

WT/4 10 13360 7677 42029 10 24558 20815 42029 10 28903 12494 42029

WT/5 9 20746 12529 42035 10 19364 8800 42029 10 24982 10576 42029

0 - - 42400 0 - - 42159 2 5191 315 42127 8 8639 1180 42037

0 - - 42240 0 - - 42124 0 - - 42068 1 7198 0 42054

0 - - 42417 1 1833 0 42184 3 3993 337 42083 4 8713 1688 42056

WT/2

WT/3

WT/4

WT/5

10 14133 2042 42041 10 26820 3736 42029 10 45055 5129 42029

6 15603 1155 42040 10 33147 2619 42029 10 61717 4160 42029

10 15090 2789 42029 10 23934 1123 42029 10 47549 4546 42029

Optimum: 42029
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eER

PMX

Population Size 240 480 960
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Table 6 shows that increasing the number of cities from 318 to 439 in TSP instance pr439 necessitates a 

slight increase in the population sizes used in EHBSA/WT, especially for EHBSA/WT with a low number 

of cut points (n=2, 3, and 4). However, already for N=30 the convergence of EHBSA/WT is reliable for all 

settings except for n=2, and for N=60, the convergence of EHBSA/WT is reliable also for n=2. For many 

settings, the number of evaluations for the 439-city problem decreases compared to the smaller problem of 

318-cities presented above, which indicates good scalability of EHBSA/WT. However, other recombination 

operators show a significant decrease in performance compared to the 318-city problem lin318. Extended 

ER is not capable of achieving reliable convergence to the optimum even with a population of size N=960, 

whereas convergence of PMX and OX becomes reliable only with N=960, yielding a significantly inferior 

performance compared to EHBSA/WT with almost any settings. 

 

Table 6. Results for pr 439 

#O
PT ANE STD Aver

#O
PT ANE STD Aver

#O
PT ANE STD Aver

#O
PT ANE STD Aver

WT/2 1 4308 0 107240 5 9535 6919 107228 9 10293 1316 107218

WT/3 3 5531 2963 107249 7 11937 4777 107222 10 13447 2019 107217

WT/4 5 13922 13981 107228 10 11116 5615 107217 10 17650 3323 107217

WT/5 8 11892 4948 107226 10 17155 8182 107217 10 21585 5270 107217

0 - - 107826 0 - - 107371 0 - - 107373 1 8875 0 107293

0 - - 107473 0 - - 107285 0 - - 107222 2 19441 11447 107273

0 - - 107768 0 - - 107483 0 - - 107345 1 6689 0 107290

WT/2

WT/3

WT/4

WT/5

4 14398 1171 107247 2 25841 4372 107247 8 55550 7219 107247

4 34603 16951 107223 3 54616 4084 107224 1 74511 0 107222

2 14923 333 107247 4 29773 2930 107236 8 62157 7863 107224

Optimum: 107217
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To summarize the results for a hybrid EHBSA/WT combined with a 2-OPT local heuristic, we can observe 

that EHBSA/WT provides robust performance for even large TSP instances, whereas other recombination 

methods for TSP provide performance that is inferior with respect to reliability and computational efficiency. 

Comparing the results to those presented in Robles et al. (2002), EHBSA/WT is capable of solving qualita-

tively larger instances, and it is able to do this more reliably and efficiently than the methods from Robles et al. 

(2002) can do for significantly smaller problems. EHBSA/WT thus provides a promising solution to TSP, 

while not limiting the application to this class of problems. We believe that using more advanced local heuris-

tics, such as Lin-Kernighan (LK) (Lin & Kernighan, 1973; Helsgaun, 2000), will provide results competi-

tive with state-of-the-art techniques for solving TSP. However, the use of EHBSA in other problem domains, 

such as flow shop scheduling, may be a better target area for the proposed algorithm. 

6 Summary and Conclusions

In this paper we have proposed several variants of probabilistic model-building genetic algorithms (PMBGAs) 

based on learning and sampling an edge-histogram matrix for solving permutation problems. Learning an 

edge-histogram matrix consists of computing the edge-histogram matrix for a population of promising candi-

date solutions. 

Two methods for sampling the edge histogram matrix have been proposed: (1) edge-histogram-based sam-

pling without template (EHBSA/WO), and (2) edge-histogram-based sampling with template (EHBSA/WT). 

EHBSA/WO uses only the learned edge histogram matrix to generate new candidate solutions, whereas 

EHBSA/WT uses a template selected from the population of promising candidate solutions as a starting point 

and modifies the template to generate a new solution. A tunable procedure EHBSA/WT/n for selecting the 

elements of the template permutation to be sampled anew has been proposed. EHBSA/WT/n uses a scheme 

similar to n-point crossover to choose a segment of the template that is to be resampled to generate a new solu-

tion. One of the important features of an edge histogram matrix is that this model can be learned incrementally, 

which allows for optimization with the use of only little memory. 

EHBSA/WO and EHBSA/WT have been applied to several benchmark instances of the traveling salesman 

problem (TSP) with and without the use of local search. EHBSA/WT has performed significantly better than 

EHBSA/WO and other PMBGAs proposed in the past for solving this type of problems. EHBSA has also 

proven to provide significantly better results than some other popular two-parent recombination techniques for 

permutations, including extended edge recombination, OX, and PMX. Experimental results indicate that an-

other advantage of EHBSA is the use of significantly smaller population sizes than those that are necessary 

with most other evolutionary algorithms for permutation problems. 

Local search has proven to be advantageous and it has decreased the computational requirements for find-



ing a globally optimal tour in TSP, providing a method capable of solving significantly larger problems of 

hundreds of cities. However, in future more in-depth empirical analysis should be performed with more ad-

vanced local searchers and the results should be compared to state-of-the-art techniques for solving TSP. 

However, note that EHBSA does not use any specific features of TSP such as the existence of locations for all 

elements in the permutation or the distance metric for estimating the distances between the cities; all informa-

tion is acquired automatically by learning and sampling alternative permutations. That is why EHBSA can be 

used to solve other problems defined on permutations. For example, EHBSA can be easily extended to solu-

tion of scheduling problems as described in Tsutsui & Miki (2002). 

Despite the promising results, the paper should be understood as one of the first steps toward scalable solu-

tion of large permutation problems with PMBGAs, because PMBGAs proposed in the past for solving permu-

tation problems are capable of solving only rather small problems. The paper provides many opportunities for 

further research in this area, some of which have been mentioned throughout the paper. 
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