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Abstract

By being able to build and sample models of promising solutions, Estimation of Distribution Algorithms (EDAs)

gain many advantages over standard evolutionary algorithms. However, this comes at the cost of an expensive

model-building phase. One way to try and eliminate this bottleneck is to incorporate prior knowledge into the

model-building, but this can be a difficult task. Another approach is to modify the crossover operator in a standard

genetic algorithm(GA) to exploit this prior information. This paper describes a method to build a network crossover

operator that can be used in a GA to easily incorporate problem-specific knowledge such that it better respects

linkages between bits. The performance of this operator in the simple genetic algorithm(GA) is then compared to

other operators as well as the hierarchical Bayesian Optimization Algorithm (hBOA) on several different problem

types, all with both elitism replacement and Restricted Tournament Replacement (RTR). The performance of all

the algorithms and replacement mechanisms are then analyzed and the results are discussed.
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Abstract

Practitioners often have some information about the problem being solved, which may be
represented as a graph of dependencies or correlations between problem variables. Similar
information can also be obtained automatically, for example by mining the probabilistic models
obtained by EDAs or by using other methods for linkage learning. This information can be
used to bias variation operators, be it in EDAs (where it can be used to speed up model
building) or in GAs (where the linkages can be explored by modifying crossover). This can allow
us to solve problems unsolvable with conventional, problem-independent variation operators,
or speed up adaptive operators such as those of EDAs. This paper describes a method to
build a network crossover operator that can be used in a GA to easily incorporate problem-
specific knowledge. The performance of this operator in the simple genetic algorithm(GA) is
then compared to other operators as well as the hierarchical Bayesian Optimization Algorithm
(hBOA) on several different problem types, all with both elitism replacement and Restricted
Tournament Replacement (RTR). The performance of all the algorithms are then analyzed and
the results are discussed.

Keywords: Genetic Algorithms, Crossover, Replacement, Hierarchical BOA, efficiency enhance-
ment, model structure, model complexity, estimation of distribution algorithms.

1 Introduction

In order for genetic algorithms (GAs) to solve problems robustly and scalably, their operators must
respect the linkage between bits (Goldberg, 2002). Unfortunately, conventional variation operators
of genetic algorithms often will break up these linkages(Goldberg, 2002). One of the solutions to
this problem is to design competent GAs that incorporate linkage learning. Some of the most pow-
erful of these types of algorithms are estimation of distribution algorithms (EDA) (Baluja, 1994;
Mühlenbein & Paaß, 1996; Larrañaga & Lozano, 2002; Pelikan, Goldberg, & Lobo, 2002). EDAs
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work by building a probabilistic model of promising solutions and sampling new candidate solu-
tions from the built model. While EDAs have many advantages over standard GAs (Larrañaga &
Lozano, 2002; Pelikan, Sastry, & Cantú-Paz, 2006), the model building is often very computation-
ally intensive, so much so that much of the work of EDAs has focused on efficiency enhancements
such as parallelization (Cantú-Paz, 2000; Sastry, Goldberg, & Llorà, 2007), learning from expe-
rience (Schwarz & Ocenasek, 2000; Baluja, 2006; Hauschild, Pelikan, Sastry, & Goldberg, 2008),
or sporadic and incremental model building (Ocenasek & Schwarz, 2000; Pelikan, 2005; Pelikan,
Sastry, & Goldberg, 2006; Etxeberria & Larrañaga, 1999; Pelikan, Sastry, & Goldberg, 2008) to
improve model building speed.

However, often we have prior information about the problem, which can help us speed up EDAs
or directly bias EA variation operators. For example, in graph-based problems we are implicitly
given a guide to the strongest dependencies internal to a problem. In addition, EDAs themselves
leave us with a tremendous amount of structural information, which may in turn be used to bias
operators.

The important question is how best to exploit this information to speed up problem-solving.
One way is to bias the model search in EDAs towards some user-specified network model (Schwarz
& Ocenasek, 2000; Mühlenbein & Mahnig, 2002) or a network model generated from trial runs of
an EDA (Hauschild & Pelikan, 2009). However, this can be difficult, as if this information is not
fully correct it can often lead to the algorithm being unable to solve the problem. An alternative
method to take advantage of structural information given to us about a problem is to modify the
crossover operator itself in a genetic algorithm to better respect the important linkages in the
underlying problem structure. This paper discusses a network crossover operator that works with
a user-specified network graph to determine which bits are exchanged in the crossover operation.
In addition, due to not requiring a costly model building phase, it might be able to outperform
EDAs.

In this paper we study the effects of our network crossover operator against uniform and two-
point crossover on several test problems known to be hard for standard evolutionary algorithms.
In addition, the proposed algorithm is compared against the hierarchical Bayesian Optimization
Algorithm (hBOA) (Pelikan & Goldberg, 2001; Pelikan & Goldberg, 2003; Pelikan, 2005), one of
the most powerful EDAs currently available.

The paper is organized as follows. Section 2 describes the network crossover operator used in
this paper. Section 3 outlines the algorithms tested. Section 4 describes the test problems used in
this paper. Section 5 presents the experimental results. Finally, section 6 summarizes and concludes
the paper.

2 Network Crossover

While the uniform crossover operator is effective at solving many problems (Goldberg, 1989), it
can too heavily disrupt problems that have many bits which are tightly linked (Thierens, 1999).
The operator in this paper tries to solve this problem by creating a special crossover that better
respects the linkages in the underlying problem structure.

Any two-parent crossover operator starts by creating a mask, which defines what bits to ex-
change and what bits to keep the same. For example, in the GA uniform crossover operator, bits are
exchanged between two parents at some specified exchange rate to create a new candidate solution.
Explained another way, for each uniform crossover operation we could generate a crossover mask
of n bits, such that if the kth bit is a 1, the child’s kth bit is set to the first parent, otherwise the
child’s kth bit is set to the second parents kth bit. The probability of any particular bit being 1
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is usually set to 50%. In our case, we we want to create a specialized mask that respects problem
structure.

The network crossover first requires a n × n matrix G that specifies the strongest connections
between bits. While this does require information from the practitioner, it does not require in-depth
knowledge of the strength of these interactions. For graph problems, such as graph-bipartitioning
or graph coloring, this graph G is inherent to the problem definition. For problems like MAXSAT
and Ising Spin glasses, it is also easy to specify such a structure. For those problems without an
implicit graph, it is possible to run an EDA on trial instances of the problem to learn a network
structure.

Given this network G, it is then possible to build a crossover mask m quite easily. First a
random bit i is selected. This bit is then added to the crossover mask by setting mi = 1. Then a
randomized breadth-first search is performed on the network G, setting each corresponding bit in
m to 1, until m reaches the desired size. If the breadth-first search ends before the desired size is
reached, an additional random starting point is selected and the process repeated.

More formally, assuming we have a n × n network G and an empty crossover mask vector M :

1. While |M | ≤ n/2

(a) Select a starting point p.

(b) Let vector C = p.

(c) Repeat

i. Set C to the set of all x, such that Gi∈M,x = 1

ii. While C 6= ∅ AND |M | ≤ n/2

A. Remove an element i randomly from C.

B. Add i to M .

(d) Until C ≡ ∅ or |M | > n/2

The end result is a crossover mask that should most often disrupt bits that are separated the
furthest from each other in G.

The key point to remember when constructing G is that it is not necessary to specify all
the problem structure, but only the strongest linkages. For most problems, especially graph based
problems, the network G can be constructed by connecting only those bits that have a edge between
them. For many other classes of problems, it is also quite trivial to construct. For example, in the
NK landscape instances in this work, if the bits i and j are neighbors (have a direct interaction),
then Gi,j = 1. Otherwise, Gi,j = 0. For Trap-5, Gi,j = 1 if bits i and j are in the same trap
partition.

The idea of using a network to modify recombination operators is not new and has inspired other
work in the past (Drezner & Salhi, 2002; Drezner, 2003; Stonedahl, Rand, & Wilensky, 2008). Our
version of a crossover operator modified by network information most closely resembles the work
by Stonedahl (Stonedahl, Rand, & Wilensky, 2008). In Stonedahl’s work the crossover mask was
built using a random walk through the network structure. In our work we use a breadth first search
to emphasize the short range dependencies, since these dependencies were found to be strongest in
prior work (Hauschild, Pelikan, Sastry, & Goldberg, 2008). However, our work was not an attempt
to improve on this operator, but rather to compare our operator to other standard GA operators
and a powerful EDA.
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3 Tested Algorithms

The genetic algorithm(GA) (Holland, 1975; Goldberg, 1989) evolves a population of candidate so-
lutions typically represented by binary strings of fixed length. The starting population is generated
at random according to a uniform distribution over all binary strings. Each iteration starts by
selecting promising solutions from the current population; in this work we use binary tournament
selection without replacement. New solutions are created by applying variation operators to the
population of selected solutions. These new candidate solutions are then incorporated into the
population using a replacement operator. The run is terminated when some termination criteria
has been met. In this work we terminate each run either when the global optimum has been found
or when a maximum number of iterations have been reached.

The most common variation operators are crossover and bit-flip mutation (Goldberg, 1989). In
this work we use three different crossover operators, both that take two candidate solutions and
generate two new candidate solutions. The first, network crossover, is explained in the previous
section. Uniform and two-point crossover are also used.

The hierarchical Bayesian optimization algorithm (hBOA) (Pelikan & Goldberg, 2001; Pelikan &
Goldberg, 2003; Pelikan, 2005) is an EDA that uses Bayesian networks to represent the probabilistic
model and incorporates restricted tournament replacement (Harik, 1995) for effective diversity
maintenance. Each generation, hBOA evolves a population of candidate solutions represented by
fixed-length strings over a finite alphabet (for example, binary strings). The initial population is
generated at random according to the uniform distribution over the set of all potential solutions.
Each iteration (generation) starts by selecting promising solutions from the current population
using any standard selection method of genetic and evolutionary algorithms.

After selecting the promising solutions, hBOA uses these solutions to automatically learn both
the structure (edges) as well as the parameters (conditional probabilities) of the model. In this
paper, a greedy algorithm is used to learn the structure of BNs with local structures (Pelikan,
2005). To evaluate structures, the Bayesian-Dirichlet metric with likelihood equivalence for BNs
with local structures (Chickering, Heckerman, & Meek, 1997) is used with an additional penalty
for model complexity (Friedman & Goldszmidt, 1999; Pelikan, 2005).

The next iteration is executed unless some predefined termination criteria are met. For example,
the run can be terminated when the maximum number of generations is reached or the entire
population consists of copies of the same candidate solution. For more details about the basic
hBOA procedure, see Pelikan and Goldberg (2001) or Pelikan (2005).

3.1 Deterministic Hill-Climber

For both GA and hBOA runs, a deterministic hill climber(DHC) was incorporated to improve
performance. DHC takes a candidate solution represented by a n-bit binary string and performs
one-bit changes on the solution that lead to the maximum improvement. This process is terminated
when no possible single-bit flip improves solution quality. Initially experiments without DHC were
considered, but for all settings tested, DHC dramatically improved performance.

4 Test Problems

This section describes the test problems considered in this paper.
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4.1 Trap-5: Concatenated 5-bit trap

In trap-5 (Ackley, 1987; Deb & Goldberg, 1991), the input string is first partitioned into independent
groups of 5 bits each. This partitioning is unknown to the algorithm and it does not change during
the run. A 5-bit fully deceptive trap function is applied to each group of 5 bits and the contributions
of all trap functions are added together to form the fitness. The contribution of each group of 5
bits is computed as

trap5(u) =

{

5 if u = 5
4 − u otherwise

, (1)

where u is the number of 1s in the input string of 5 bits. The task is to maximize the function. An
n-bit trap5 function has one global optimum in the string of all 1s and (2n/5−1) other local optima.
Traps of order 5 necessitate that all bits in each group are treated together, because statistics of
lower order are misleading.

4.2 NK Landscapes

An NK fitness landscape (Kauffman, 1989; Kauffman, 1993) is fully defined by the following com-
ponents: (1) The number of bits, n, (2) the number of neighbors per bit, k, (3) a set of k neighbors
∏

(Xi) for the i-th bit, Xi for every i ∈ {0, . . . , n − 1}, and (4) a subfunction fi defining a real
value for each combination of values of Xi and

∏

(Xi) for every i ∈ {0, . . . , n − 1}. Typically, each
subfunction is defined as a lookup table. The objective function fnk to maximize is defined as

fnk(X0, . . . ,Xn−1) =

n−1
∑

i=0

fi(Xi,
∏

(Xi)) (2)

The difficulty of optimizing NK landscapes depends on all components defining an NK problem
landscape For k > 1, the problem of finding the global optimum of unrestricted NK landscapes
is NP-complete (Wright, Thompson, & Zhang, 2000). The problem becomes polynomially solv-
able with dynamic programming even for k > 1 if the neighbors are restricted to only adjacent
string positions (Wright, Thompson, & Zhang, 2000) or if the subfunctions are generated accord-
ing to some distributions (Gao & Culberson, 2002). For unrestricted NK landscapes with k > 1,
a polynomial-time approximation algorithm exists with the approximation threshold 1 − 1/2k+1

(Wright, Thompson, & Zhang, 2000).

In this paper we consider two classes of NK landscape instances, unrestricted NK landscapes
and nearest neighbor NK landscape. In the first case, unrestricted NK landscapes, for each string
position Xi, we generate a random set of k neighbors where each string position except for Xi is
selected with equal probability. Then, a lookup table defining fi is generated using the uniform
distribution over [0, 1). In this paper we consider unrestricted NK landscapes with k = 5 and so
these instances are NP-complete.

The second class of instances, nearest neighbor NK landscapes, have the following two restric-
tions:

1. Bits are arranged in a circle and the neighbors of each bit are restricted to the k bits that
follow this bit on the circle. This restriction to nearest neighbors ensures that even those
instances of k > 1 can be solved in polynomial time using dynamic programming.

2. Some subproblems may be excluded to provide a mechanism for tuning the size of the overlap
between subsequent subproblems. Specifically, the fitness is defined as
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fnk(X0,X1, . . . ,Xn−1) =

bn−1

step
c

∑

i=0

fi(Xi×step,
∏

(Xi)) (3)

where step ∈ {1, 2, . . . , k + 1} is a parameter denoting the step with which the basis bits
are selected. The amount of overlap between consequent subproblems can be reduced by
increasing the value of step.

To make the instances more challenging, string positions in each instance are shuffled by reording
string positions according to a randomly generated permutation using the uniform distribution over
all permutations.

The dynamic programming algorithm used to solve the nearest neighbor class of NK landscape
instances is based on refs. (Pelikan, Sastry, Butz, & Goldberg, 2006; Pelikan, Sastry, Goldberg,
Butz, & Hauschild, 2009). The branch and bound algorithm used to solve the unrestricted NK
landscapes is based on ref.(Pelikan, 2008). While this branch and bound technique is complete and
thus guaranteed to find the optimum, its complexity grows explonentially fast and solving large
NK landscapes becomes intractable with this algorithm.

5 Experiments

5.1 Experimental Setup and Parameters

For Trap-5, problem sizes of n = 100 to n = 300 were examined for most algorithms, with bisection
used to determine the minimum population size to ensure convergence to the global optimum in
10 out of 10 independent runs. For more reliable results, 10 independent bisection trials were run
for each problem size and algorithm. In some cases the worst performing algorithms had their
experiments cut short when the problem sizes necessary to solve the problem became extremely
large.

For NK landscapes with nearest neighbor interactions, problem sizes of n ∈ {30, 60, 90, 120, 150, 180, 210}
were considered, with k = 5. Two step sizes were considered, namely step ∈ {1, 5} so that we could
look at the two extreme cases (most and least overlap possible between subproblems without con-
sidering those cases where the subproblems were completely disjoint). For each combination of n, k,
and step, 1000 random problem instances were generated.

In the case of unrestricted NK landscapes, problem sizes of n ∈ 20, 22, 24, 26, 28, 30, 32, 34, 36, 38
were considered, again with k = 5, with 1000 random problem instances tested for each problem
size.

To make sure that the performance of the algorithms was consistent regardless of the replace-
ment technique used, new solutions were incorporated into the old population using two replacement
techniques, RTR and elitism. RTR (Pelikan, 2005) is a niching method that helps to ensure di-
versity in a population by having new candidate solutions replace solutions that are similar to
themselves in the population. Elitist replacement works by each generation keeping some portion
of the population’s most fit solutions. In this work, the 50% most fit solutions are kept each
generation.

Both GA and hBOA were applied to all the problem instances, along with all combinations of
crossover operators and replacement operators. For all GA runs, bit-flip mutation was used with a
probability of flipping each bit of pm = 1/n. For all crossover operators, the probability of crossover
was set to 0.6.
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Figure 1: Performance of EAs on Trap5, RTR

For each problem instance, bisection was used to determine the minimum population size to en-
sure convergence to the global optimum in 10 out of 10 independent runs. Each run was terminated
when the global optimum had been found (success) or when the maximum number of generations
n× 4 had been reached (failure). Typically when comparing algorithms, the number of evaluations
is considered the key statistic. However, for hybrid evolutionary algorithms, often a great deal of
time is spent in local search, so the number of DHC flips is also examined.

5.2 Trap-5, RTR

The number of evaluations necessary to solve Trap-5 using RTR for the selected algorithms is shown
in Figure 1a. The best performing algorithm is the GA with network crossover for all problem sizes.
This is to be expected as the network crossover should only rarely disrupt those bits in the same
trap partition. hBOA also scales well as problem size increases. However, both two-point crossover
and uniform crossover perform very poorly. Due to the extremely large population sizes necessary
to solve Trap-5 with two-point crossover, the experiments were cut off for two-point crossover at
n = 190.

Figure 1b and Figure 1c shows the number of local search steps and execution time, respectively,
necessary to solve Trap-5 with RTR. Again, GA with network crossover performs the best for all
problem sizes, with hBOA scaling similarly. Uniform and 2-point again perform poorly and show
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Figure 2: Performance of EAs on Trap-5, elitism

exponential scaling.

5.3 Trap-5, Elitism

While the previous results strongly showed that GA with network crossover and hBOA both scaled
similarly on Trap-5 using RTR, does tihs relative performance change when the replacement tech-
nique is changed?

Figure 2a shows the number of evaluations necessary to solve Trap-5 using the selected algo-
rithms. As with RTR, the GA with network crossover is the best performing algorithm. hBOA
again scales quite well. Uniform crossover scales very poorly and the experiments were terminated
for problem sizes greater than n = 130. Two-point crossover was not used as for n = 100 the GA
was not able to solve all 10 independent bisection runs even using extremely large population sizes.

Figure 2b and Figure 2c shows the number of local search steps and execution time, respectively,
necessary to solve Trap-5 with RTR. Again, GA with network crossover performs the best for all
problem sizes, with hBOA scaling similarly. Uniform clearly shows exponential scaling of both
execution time and number of local search steps.
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Figure 3: Performance of EAs for nearest neighor NK landscapes, step = 5, RTR

5.4 Nearest Neighbor NK Landscapes, RTR

Figure 3a shows the average number of evaluations used by our algorithms to solve NK landscapes
with nearest neighbor interactions of step = 5 using RTR. In this case, for step = 5, we have the
least interaction possible between subproblems without making them separable. We note that as
problem size increases, the number of evaluations required by hBOA drops in comparison to all the
GA crossover operators. The worst performing algorithm is GA with two-point crossover, taking
the most evaluations for all problem sizes.

However, as noted in the previous section, another important factor in determining the per-
formance of hybrid algorithms is the time spent in local search (DHC). The number of DHC flips
until the optimum is discovered is displayed in Figure 3b. It is very clear from this figure that as
problem size increases, the number of local search steps required by the GAs with uniform crossover
and two-point crossover rise much higher than for the other two algorithms. The GA with network
crossover requires the lowest number of steps to start, but as problem size increases, hBOA starts
to require less DHC bit flips.

To combine these results, Figure 3c shows the average execution time for these instances. Since
the GA with two-point crossover took the most evaluations and local search steps, we would expect
that it would take the most execution time, and as problem size increases this is the case. GA
with network crossover has the lowest execution time for all instances, but hBOA execution time
similarly scales. It is important to note that even though the GA with network crossover takes
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Figure 4: Performance of EAs for nearest neighor NK landscapes, step = 1, RTR

more evaluations and also slightly more local search steps, it is still able to beat hBOA in execution
time. This is most likely due to much less overhead in the operator, with hBOA required to build
a model each generation.

The next important question is what happens when the interactions between subproblems
increases? Figure 4a displays the average number of evaluations our algorithms needed for NK
landscapes with nearest neighbor interactions for step = 1. In these experiments we are using the
maximum possible overlap between subproblems. Again the GA with two-point crosssover takes
the most evaluations for all problem sizes. hBOA takes the least number of evaluations for all
except the smallest population size, but the GA with network crossover is still very close even for
the largest problem size considered.

Figure 4b shows the number of local search steps for our algorithms when step = 1. The GA
with network crossover has the best performance for all but the smallest problem size. On the
other hand, while GA with uniform crossover starts out slightly better than the GA with network
crossover for the smallest problem size, this changes dramatically as problem size increases. While
hBOA takes more DHC steps than the GA with network crossover, it still scales at the same rate.
These results are very closely mirrored in Figure 4c, which shows the average execution time for
these instances. The worst performing algorithm is again the GA with two-point crossover. The
network crossover operator leads to the best performance, but hBOA again scales similarly, taking
about twice as long to solve each instance on average throughout the problem sizes.
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Figure 5: Performance of EAs for nearest neighor NK landscapes, step = 5, elitism

5.5 Nearest Neighor NK Landscapes, Elitism

While the previous results strongly show that GA with network crossover and hBOA both perform
well with RTR, with the GAs with uniform and two-point crossover performing poorly, does this
relative performance stay the same when the replacement technique is changed? To answer this
question, the above experiments were repeated, but instead of using RTS, elitist replacement was
used, with the worst 50% of the population replaced with new children each generation.

The average number of evaluations to solve our problems with each EA using elitism is shown
in Figure 5a. hBOA requires the least number of evaluations for all problem sizes. Both GAs
with uniform and two-point crossover on the other hand show extremely poor performance. As
problem size increases, the number of evaluations dramatically increases, so much so that even
for extremely large problem sizes it was unable to find the solution. For this reason, experiments
only up to n = 150 for uniform crossover and n = 120 are shown. GA with network crossover on
the other hand, while scaling slightly worse than hBOA in regards to evaluations, still grows only
polynomially fast.

Figure 5b shows the number of local search steps required for each of our EAs. Again, the GAs
with uniform and two-point crossover are by far the worst performers, requiring an extremely large
number of evaluations even for modest problem sizes. hBOA takes the least number of local search
steps, with the GA with network crossover scaling slightly worse.

Next, we look at the total execution time of our instances for step = 5 and elitism replacement
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Figure 6: Performance of EAs for nearest neighor NK landscapes, step = 1, Elitism

in Figure 5c. Even though the GA with network crossover took more local search steps and more
evaluations, it shows a superior execution time across the range of problem sizes. However, hBOA
execution time is very close, taking about twice as on average for the largest population size. Both
other GAs were much slower.

Netx, we look at the case with elitist replacement with the heaviest overlap possible between
subproblems, step = 1. The number of evaluations required to solve these instances is shown in
Figure 6a. Similarly to the case of step = 5, but even more severe in this case, without the niching
offered by RTS the GAs with uniform and two-point crossover have trouble solving the largest
instances. For this reason, the GAs with uniform and two-point crossover were only used up to
n = 120. hBOA was the best performing algorithm in regards to evaluations. The GA with network
crossover took more evaluations, with the gap between it and hBOA gradually increasing as problem
size increases. Next we examine the number of local search steps required in Figure 6b. The results
show that GA with network crossover spends slightly more time in local search than hBOA. Both
uniform and two-point crossover performs poorly. Lastly we look at the average execution time for
our EAs in Figure 6c. Again the GA with uniform crossover has the best execution time for all
problem sizes, but hBOA is very close, only being slower by 30% for the largest population size.
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Figure 7: Performance of EAs using RTR as a function of instance difficulty ranked by network
crossover execution time, n = 210

5.6 Nearest Neighbor NK Instance Difficulty

In the previous results, 1000 instances of each problem size and setting were averaged. Another
interesting question presents itself: As instance difficulty varies, does the performance of each
algorithm vary? To attempt to answer this question, for the largest problem size(n = 210) and
using RTR with step = 5, we ranked the instances by their execution time when solved by the GA
with network crossover (the best performing algorithm). For these results the GA with two-point
crossover were omitted as it was the worst performing algorithm.

Figure 7 shows the average number of flips for a percentage of the easiest instances divided by
the mean of all the instances for both step sizes. In both cases, hBOA shows the least difference
in number of local search steps required between the easiest and hardest instances. In fact, for
step = 5, hBOA spends nearly the same amount of time in local search regardless of instance
difficulty. However, the other algorithms show a much more pronounced difference, with the GA
with uniform crossover showing the most variance in local search steps by problem difficulty. In
both cases, the GA with network crossover was between the two extremes.

5.7 Unrestricted NK Landscapes, RTR

The previous results show that the GA with network crossover is the best performing algorithm
in regards to execution time for nearest neighbor NK landscapes. However, for unrestricted NK
landscapes, the interactions between bits can become much more complicated.

Figure 8a shows the average number of evaluations for all compared algorithms on unrestricted
NK landscapes using RTR. The worst performing algorithm with respect to evaluations is the GA
with two-point crossover, requiring the most evaluations for all problem sizes. For the smallest
problem size, hBOA requires slightly more evaluations than both uniform and network crossover,
but for all other problem sizes it requires the least evalations and scales the best. GA with uniform
and network crossover perform almost identically.

The number of local search steps for all compared algorithms on unrestricted NK landscapes
using RTR is shown in Figure 8b. The GAs with uniform and network crossover performed very
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Figure 8: Performance of EAs on unrestricted NK landscapes, RTR

similarly, required the least local search steps. For the smaller problem sizes, hBOA requires
the most local search steps, but it shows superior scaling to two-point crossover as problem size
increases.

Figure 8c shows the overall average execution time for unrestricted NK landscapes using RTR.
The results are very similar to evaluations, with hBOA scaling the best of all examined algorithms.
GA with two-point crossover is again the worst, with uniform and network crossover performing
almost identically.

5.8 Unrestricted NK Landscapes, Elitism

As in the previous problem types, again we examine the effect of changing the replacement tech-
nique. Figure 9a shows the average number of evaluations used to solve unrestricted NK landscapes
using elitist replacement. GA with uniform and network crossovers performed the best in regards to
evaluations. For all but the smallest problem sizes, two-point crossover performs the worst. While
hBOA starts off requiring the most evaluations, it scales the best of all compared algorithms and
for the largest problem size it matches the performance of the best performing algorithms.

The results for average execution time and average local search steps are show in Figure 9b and
Figure 9c. Much the same pattern is observed in both. On the smallest size, hBOA is the worst
performing algorithm. However, as problem size increases, hBOA shows superior scaling and in
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Figure 9: Performance of EAs on unrestricted NK landscapes, elitism

regards to execution time matches the GAs with uniform and network crossover. The GA with
two-point crossover is clearly the worst performing algorithm as problem size increases.

5.9 Unrestricted NK Instance Difficulty

As with the nearest neighbor NK landscapes, we also examined how the instance difficulty effected
each algorithm. For the largest problem size(n = 38) and using RTR, the instances were ranked by
their execution time when solved by the GA with network crossover (the best performing algorithm).

Figure 10 shows the average number of flips for a percentage of the easiest instances divided by
the mean of all the instances using RTR. The results show that for all compared algorithms, much
less time in local search is spent on the easiest instances. This is in contrast to the difficulty results
on nearest neighbor NK landscapes, where hBOA spent almost the same amount of time in local
search on the easiest instances as it did on the hardest. It is also of note that unlike for nearest
neighbor NK landscapes, network crossover now shows the greatest difference in time spent in local
search on the easiest instances. Also of note is that uniform and two-point crossover perform almost
identically.

15



0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

Percent easiest netx instances

N
um

be
r 

of
 fl

ip
s/

m
ea

n

 

 

netx
uniform
hboa
2p

(a) RTR

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

Percent easiest netx instances

N
um

be
r 

of
 fl

ip
s/

m
ea

n

 

 

netx
uniform
hboa
2p

(b) elitism

Figure 10: Performance of EAs as a function of instance difficulty ranked by network crossover
execution time, n = 38

6 Summary and Conclusions

This paper describes a method to construct a network crossover operator that can be used in a GA
to easily take into account previous knowledge of problem structure. The GA with this network
crossover was then used in a hybrid GA and compared to other common crossover operators and
one of the strongest EDAs available, the hierarchical Bayesian optimization algorithm(hBOA). In
addition, two different replacement methods were used.

It was shown that for NK landscapes with nearest neighbor interactions and trap-5, the network
crossover GA required less running time than hBOA or other common GA crossover operators for
all instances and parameter settings. In addition, it was shown that RTR was superior to elitist
replacement on these problems.

For unrestricted NK landscapes the results showed that hBOA scaled the best out of all tested
algorithms, with network crossover performing very similarly to uniform crossover. Also, the re-
placement method had less effect on the results, with very similar results for both elitist replacement
and RTR.

An important point is that the improvements over hBOA required that the user specify a
network representing the strongest dependencies between bits in the underlying problem. However,
there are many classes of problems where defining such a structure is trivial, from problems in graph
theory (such as graph coloring and graph bipartitioning) to Ising Spin glasses and MAXSAT. In
addition, as shown in ref. (Hauschild & Pelikan, 2009), it is also possible to use runs of an EDA
to learn about the structure of a problem and use this information to bias EDAs.

There are several key areas for future research on network crossover. First of all, the crossover
should be tested on other problems where it is possible to create a network of important depen-
dencies, such as graph coloring, minimum vertex cover and MAXSAT. Using an EDA to learn a
network structure for futher GA network crossover runs should also be done. Next, other methods
of using network information to modify crossover should be explored and tested. Finally, the GA
with network crossover should be tested against a version of hBOA that takes into account problem
specific knowledge to increase model-building speed.
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