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Abstract

This paper proposes an ant colony optimization (ACO) for solving quadratic assignment
problems (QAPs) on a graphics processing unit (GPU) by combining tabu (TS) with ACO in
CUDA (compute unified device architecture). In TS for QAP, all neighbor moves are tested.
These moves form two groups based on computing of move cost. In one group, the computing
of cost is O(1) and in the other group, the computing of move cost is O(n). We compute
these two groups of moves in parallel by assigning the computations to threads of CUDA.
In this assignment, we propose an efficient method which we call Move-Cost Adjusted Thread
Assignment (MATA ). The results with GPU computation with MATA show a promising speedup
compared to computation with the CPU. It is also shown that MATA is effective in applying
2-opt local search.
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1 Introduction

Recently, parallel computations using graphics processing units (GPUs) have become popular with
great success, especially in scientific fields such as fluid dynamics, image processing, and visualiza-
tion using particle methods [20]. These parallel computations are reported to see a speedup of tens
to hundreds of times compared to CPU computations.

Studies on parallel evolutionary computation with GPU computation are found in genetic pro-
gramming (GP) [12, 13, 30, 3], genetic algorithms (GAs) [31, 4, 32, 16, 9], evolutionary programming
(EP) [8], evolutionary strategies (ESs) [14], ant colony optimization (ACO) [2], and others.

Studies solving the quadratic assignment problem (QAP) on GPUs using an evolutionary model
are found in [27, 28, 21, 15]. In [27, 28], distributed GA models were used and no local searches
were applied. In [21], a cellular GA model was used and no local searches were used. In [15],
parallel hybrid evolutionary algorithms on CPU and GPU were proposed and applied to QAPs.

In our previous studies [27, 28|, we applied GPU computation to solve quadratic assignment
problems (QAPs) using a distributed parallel GA model on GPUs. However, in those studies no
local searches were applied. In this paper, we propose a parallel ACO for QAPs on a GPU by
combining tabu search (TS) with ACO in CUDA (Compute Unified Device Architecture [17]).



In a QAP, a solution ¢ is presented by a permutation of {1,2,--- ,n} where n is the problem
size. Here we consider neighbors N (¢) which are obtained by swapping two elements (7, j) of ¢. In
N(¢), there are n(n — 1)/2 neighbors. In a T'S which uses N(¢) as neighbors, we need to compute
move costs for all neighbors in N(¢). Depending on the pair value (i, j), these moves can be divided
into two groups based on computing cost.

In one group, the computing of move cost is O(1) and in the other group, the computing of
move cost is O(n) [23]. We compute these groups’ moves in parallel by assigning the computations
to threads in a thread block of CUDA. In this assignment, we devised an efficient method that
reduces disabling time, as far as possible, in each thread of CUDA. As for the ACO algorithm, we
use the Cunning Ant System (cAS) which is one of the most promising ACO algorithms [26].

In the remainder of this paper, Section 2 gives a brief review of GPU computation. Then, cAS
and how we combine it with a local search are described in Section 3. Section 4 describes a TS for
combining with ACO to solve QAPs. Section 5 describes implementation of ACO with a TS on
a GPU in detail. In Section 6, results and discussions are given. Finally, Section 7 concludes the

paper.

2 A Brief Review of GPU Computation

2.1 GPU Computation with CUDA

In terms of hardware, CUDA GPUs are regarded as two-level shared-memory machines [17]. Pro-
cessors in a CUDA GPU are grouped into multiprocessors (MPs). Each MP consists of thread
processors (TPs). TPs in an MP exchange data via fast shared memory (SM). On the other hand,
data exchange among MPs is performed via VRAM. VRAM is also like main memory for processors.
So, code and data in a CUDA program are basically stored in VRAM.

The CUDA is a multi-threaded programming model. In a CUDA program, threads form two
hierarchies: the grid and thread blocks. A block is a set of threads. A block has a dimensionality of
1, 2, or 3. A grid is a set of blocks with the same size and dimensionality. A grid has dimensionality
of 1 or 2. Each thread executes the same code specified by the kernel function. A kernel-function
call generates threads as a grid with given dimensionality and size. As for GPU in this study, we
use a single GTX 480 [18].

2.2 Single Instruction, Multiple Threads

To obtain high performance with CUDA, here we need to know how each thread runs in parallel.
The approach is called single instruction, multiple threads (SIMT) [19]. In SIMT each MP executes
threads in groups of 32 parallel threads called warps.

A warp executes one common instruction at a time, so full efficiency is realized when all 32
threads of a warp agree on their execution path. However, if threads of a warp diverge via a data-
dependent conditional branch, the warp serially executes each branch path taken, disabling threads
that are not on that path, and when all paths complete, the threads converge back to the same
execution path.

In our implementation to be described in Section 5, we designed the kernel function so that the
threads that belong to the same warp will have as few branches as possible.



3 Sequential ACO with a Local Search

As a bio-inspired computational paradigm, ACO has been applied with great success to a large
number of hard problems such as traveling selseman problem (TSP), QAP, scheduling problems,
and vehicle routing problems [6]. The first example of an ACO was Ant System (AS) [5]. Since
then, many variant ACO algorithms have been proposed as extensions of AS. Typical of these are
Ant Colony System (ACS) and MAX-MIN Ant System (MMAS) [7]. In our previous study we
proposed a new ACO algorithm called the Cunning Ant System (cAS). In this research we use cAS.

Although the ACO is a powerful metaheuristic, in many applications of ACO in solving difficult
problems, it is very common to combine it with a local search or metaheuristics [7]. In this study,
we combine cAS with a tabu search (TS) [11] which is also a powerful metaheuristic.

cAS introduced two important schemes [26]. One is a scheme to use partial solutions, which
we call cunning. In constructing a new solution, cAS uses pre-existing partial solutions. With this
scheme, we may prevent premature stagnation by reducing strong positive feedback to the trail
density. The other is to use the colony model, dividing colonies into units, which has a stronger
exploitation feature, while maintaining a certain degree of diversity among units.

cAS uses an agent called the cunning ant (c-ant). It constructs a solution by borrowing a part
of an existing solution. We call it a donor ant (d-ant). The remainder of the solution is constructed
based on 7;(t) probabilistically as usual. Let [, represent the number of nodes of partial solution
that are constructed based on 7;;(t) (note that the number of nodes of partial solutions from its
d-ant is n — ls, where n is the problem size). Then cAS introduces the control parameter v which
can define E(ly) (the average of I5) by E(ls) = n x . Using ~ values in [0.2, 0.5] is a good choice
in cAS [26].

The colony model of cAS is shown in Figure 1. It consists of m units. Each unit consists of only
one anty, (k=1,2,---,m). In this colony model, antkt, the best individual of unit k, is always
reserved. Pheromone densrcy 7i;(t) is then updated with anty, (k=1,2,---,m) and 74;(t+1) is
obtained as usual as: 7

Tij(t—kl):p.ﬂj —|—Z A*T k (1)
A*Ti];(t) =1/Cy,: if (i,j) € anty,, 0: otherwise, (2)

where the parameter p (0< p < 1) models the trail evaporation, A*r, ’;( t) is the amount of pheromone
by (mtk ;» and C’Zt is the fitness of anty ,. Values of 7;;(¢ + 1) are set to be within [Tpin, Timaz] as
in MMAS [22]. Sequential cAS with a local search can be summarized as shown in Figure 2 (please
see [26] for detail).

4 Tabu Search for Combining with ACO to Solve QAPs

4.1 Quadratic Assignment Problem (QAP)

The QAP is the problem which assigns a set of facilities to a set of locations and can be stated as
a problem to find a permutation ¢ which minimizes

cost(¢ Z Z aijbg(i)s(j)s (3)

=1 j=1

where A = (a;j) and B = (b;;) are two n x n matrices and ¢ is a permutation of {1, 2, ..., n}.
Matrix A is a flow matrix between facilities ¢ and j, and B is the distance between locations ¢ and



unit 1

Apply local search

Figure 1: Colony model of cAS with a local search

1. 1«0

2. Set the initial pheromone density (7;(7) = 7,)

3. Sample c-ant, ,randomly without using donor (k=1, 2, ..., m)

4. Apply local search (LS) to c-ant; , and set it ant*k’t k=1,2,...,m)

5. Update 7,(¢+1) using Egs. (1) and (2)

6. Construct c-ant; .., based on d-ant, (ant’; ) and 7,(++1) (k=1, 2, ..., m)

7. Apply local search (LS) to c-ant, ., (k=1,2, ..., m)

8. Compare c-ant, ., and d-ant; , and set the best one as ant’; .|
(=1,2,...,m)

9. t<« 1+l

10. If the termination criteria are met, terminate the algorithm.
Otherwise, go to 5.

Figure 2: Algorithm description of sequential cAS with a local search



j. Thus, the goal of the QAP is to place the facilities on locations in such a way that the sum of
the products between flows and distances are minimized. The functional value cost(¢) in Eq. (3)
relates to both distances between locations and flows between facilities. As a result, the problem
structure of QAP is more complex and harder to solve than TSP [22].

4.2 Tabu Search for QAP of This Study

Tabu search (TS) [11] has been successfully applied to solving large combinatorial optimization
problems [10]. Although TS is a powerful metaheuristic, it is often used in conjunction with
other solution approaches such as evolutionary computation. In [22], the Robust TS (Ro-TS) by
Taillard [23] was combined with MMAS and was used as a local search in solving QAPs.

The main idea of TS is as follows [23]. TS defines a neighborhood, or a set of moves that may
be applied to a given solution to produce a new one. Among all the neighboring solutions, TS seeks
one with the best evaluation. If there are no improving moves, TS chooses one that least degrades
the objective function. In order to avoid returning to the local optimum just visited, a taboo list is
used.

There are several implementations of TS for QAP. In this study, we implement a TS to combine
cAS on a GPU and use it as a local search with short runs. In this implementation, we used Ro-TS
with some modification. In the following, we describe the TS for QAP in this study.

Following [24], the taboo list is a 2-dimensional array (n x n) of integers where the element (4, j)
identifies the value of the future iteration at which these two elements may again be exchanged
with each other. For every facility and location, the latest iteration which the facility occupied that
location is recorded. A move is taboo if it assigns both interchanged facilities to locations they had
occupied within the taboo list size (T};st—size) most recent iterations.

The choice of Tj;s— size 18 critical; if its value is too small, cycling may occur in the search process
while if its value is too large, appealing moves may be forbidden and lead to the exploration of
lower quality solutions, resulting in a larger number of iterations [24]. To overcome the problem
related to the search of the optimal taboo list size, Ro-TS introduced randomness in the value of
Tiist—size- Following [25], we set the taboo list size as Tjjs—size X r3, where r is a uniform random
number in [0, 1).

We use the classical aspiration criterion that allows a taboo move to be selected if it leads to a
solution better than the best found so far. In [24], an aspiration function that is useful for a longer
term diversification process is proposed. In this research, we use TS as a local search in ACO, we
do not use this kind of aspiration function.

4.3 Move and Computation of Move Cost in QAP

As described in Section 4.2, TS seeks one with the best evaluation among all the neighboring
solutions. If there are no improving moves, TS chooses one that least degrades the objective
function. Thus, we need to calculate costs of all neiboring solutions efficiently. Let N(¢) be the
set of neighbors of the current solution ¢. Then a neighbor, ¢’ € N(¢), is obtained by exchanging
a pair of elements (i, j) of ¢. Then, we need to compute move costs A(¢,,j) = cost(¢') — cost(d)
for all the neighbouring solutions. The neighborhood size of N(¢) (|N(¢)|) is n(n — 1)/2 where n
is the problem size.

When we exchange r and s elements of ¢ (i.e., ¢(r), ¢(s)), the change of cost(¢), A(¢,r,s), can
be computed in computing cost O(n) as follows:



A(g, 7, 8) = arr(bp(s)s(s) — bo(rs(r)+
ars(bo(s)s(r) = Lo(r)o(s))+
asr(D(r)p(s) — Do(s)o(r))+
s (b (r)s(r) — bo(s)o(s))+ (4)
1 ar (bp(kyp(s) = Po(kys(r))+
5 as (bo(kys(r) = Lo(k)p(s))+
k=0yiztrs | @k (bo(s)otk) = Do(ryon) )+
ask (bo(ryp(k) — Do(s)p(k))

Let ¢’ be obtained from ¢ by exchanging r and s elements of ¢, then fast computation of
A(¢,u,v) is obtained in computing cost O(1) if u and v satisfy the condition {u,v} N {r,s} =0,
as follows [24]:

A(¢/7 ) (gb? u’ U)+
(aru — Qpry + Agy — asu) X
(b ()94 (w) = b (s)6/(v) F Do ()7 (0) = Doy ()7 )+ (5)
(aur — Qyr + Ays — aus) X
(b (e (s) = by w)a'(s) T by (w)ar(r) — by (wyer(r)

To use this fast update, additional memorization of the A(¢,i,7) values for all pairs (i,7) in a

table are required.

5 Implementation Details of ACO with TS on a GPU with CUDA

5.1 Overall Configuration

We coded the process of each step in Figure 2 as a kernel function of CUDA. The overall configu-
ration of ACO with TS for solving QAPs on a GPU with CUDA is shown in Figure 3.

All of the data of the algorithm are located in VRAM of GPU. They include ACO data (the
population pools (anty,, c-anty;), the pheromone density matrix 7;;), TS data (the temporal
memory for move costs; the tabu list), and QAP data (the flow matrix A and distance matrix B).
Since matrices A and B are constant data, reading them is performed through texture fetching.
On SM, we located only working data which are shared among threads tightly in a block.

As for the local search in Figure 2, we implement TS described in Section 4.2. Construction of
a new candidate solution (c-ant) is performed by the kernel function
“Construct_solutions(...)” in a single block. Then each m solutions are stored in VRAM. In the
kernel function “Apply_tabu_search(...)”, m solutions are distributed in m thread blocks.

The Apply_tabu_ search(...) function, in each block, performs the computation of move cost in
parallel using a large number of threads. Kernel function “Pheromone_update(...)” consists of 4
separate kernel functions for implementation easiness. Table 1 summarizes these kernel functions.

Kernel functions are called from the CPU for each ACO iteration. In these iterations of the
algorithm, only the best-so-far solution is transferred to CPU from GPU. It is used for checking
whether termination conditions are satisfied. Thus, in this implementation, overhead time used
for data transfer between CPU and GPU can be ignored. In the end of a run, whole solutions are
transferred from GPU to CPU.

Table 2 shows the distribution of computation time of cAS in solving QAP with sequential runs
on a CPU. Here, we used QAP instances tai40a, tai50a, tai60a, tai80a, tailOOa, tai50b, tai6Ob,
tai80b, tail00b, and tail50b which will be used in experiments in Section 6. The conditions of the



| CPU | | GPU|

Kernel functions

Allocate memory spaces

on VRAM and send data to them ’ __global__ Construct_solutionsy(...) ‘
kernel call

l Initialize Pheromone density ] P ", ’ __global __ Apply_TS(...) ‘

l Construct initial solutions ]

[ ’_global_ Update Pheromone_density(.. .)‘
l Apply local search l
]

VRAM

l Update pheromone density ]
l <o Agents

l Construct solutions ] solutions (ant*, ,, c-ant,,)

ACO - -
Ph densit, t

l Apply local search (Tabu search) ] eromone ( :;1 Sty matnx

Tabu ’Temporal memory for move costs‘
@ search ’ Tabu list ‘
QAP Flow and distance matrices
(texture memory)

Figure 3: Configuration of ACO with TS for solving QAPs on a GPU with CUDA

Table 1: Summary of kernel functions. n is the problem size, m is the number of agents, and
Trorar is the total number of threads in a block (see Section 5.2.2)

. dim3 .
Kernel functions Sl Function
grid | block
Initialize_pheromone density() n n 7=t
Update Evaporate pheromone() n n Ty *=p
pheromone '
density Lay pheromone() m 1 t; += 1/cost
Max_min_pheromone() n n adjust 7; in [Ty, Tpar ]
ConsFruct Constuct_solutions(...) m 1 |Construct c-ant
solutions
Local search |Apply_tabu_search(...) m T o741, |improve solutions by TS




runs are the same as will be described in Section 6. From this table, we can see that TS uses over
99.9% of the computation time. Thus, we can see that the efficient implementation of TS is the
most important factor in increasing speedup of this algorithm.

Table 2: Distribution of computation time of cAS in solving QAP with sequential runs on a CPU

Instances Construc?tlon TS Updat.mg
of solusions Trail

tai40a 0.007% 99.992% 0.001%
taiS0a 0.005% 99.994% 0.000%
tai60a 0.004% 99.996% 0.000%
tai80a 0.002% 99.997% 0.000%
tail00a 0.002% 99.998% 0.000%
taiS0b 0.022% 99.976% 0.002%
tai60b 0.017% 99.982% 0.001%
tai80b 0.011% 99.988% 0.001%
tail00b 0.008% 99.991% 0.000%
tail50b 0.005% 99.995% 0.000%

5.2 Efficient Implementation of TS with CUDA
5.2.1 An Inefficient Assignment of Move Cost Computations to Threads in a Block

In TS in this study, we use a table which contains move costs so that we can compute the move
cost in O(1) using Eq. (5). For each move, we assign an index number as shown in Figure 4. In this
example, we assume a problem size of n = 8. Thus, the neighborhood size |N(¢)| is 8 x 7/2 = 28.
As described in Section 5.1, each set of move cost calculations of an agent is being done in one
block. The simplest approach to computing the move costs in parallel in a block is to assign each
move indexed ¢ to the corresponding sequential thread indexed ¢ in a block.

0

10

21 1] 2
3131415

S110] 11112 13| 14

611511617 ] 18| 19| 20

Figure 4: Indexing of moves (n = 8)

Here, consider a case in which a solution ¢’ is obtained by exchanging positions 2 and 4 of a



current solution ¢ in a previous TS iteration. Then the computation of A(¢/, u,v), shown numbers
in gray squares, must be performed in O(n) using Eq. (4). The computation of the remaining
moves are performed in O(1) quickly using Eq. (5).

Thus, if we simply assign each move to the block thread, threads of a warp diverge via the
conditional branch ({u,v} N{2,4} = 0) into two calculations, threads in one group run in O(n) of
Eq. (4) and threads in the other group run in O(1) of Eq. (5). In threads of CUDA, all instructions
are executed in SIMT (please see Section 2.2 for detail). As a result, the computation time of each
thread in a warp becomes longer, and we cannot receive the benefit of the fast calculation of Eq.
(5) in GPU computation. Figure 5 shows this situation for the case shown in Figure 4. Thus, if
threads which run in O(1) and threads which run in O(n) co-exist in the same warp, then their
parallel computation time in the warp becomes longer than their own respective computation time.

Computation time of move cost

25
26
27
28

31

v

thread index
—————1 Computation time of a move cost in O(1)

mms  Computation time of a move cost in O(n)

Iomoooo2llld ¥ Disabling time

Figure 5: Simple assignment of calculations of move costs to threads in a block. Due to disabling
time in SIMT, the parallel computation by thread in a block is inefficient.

5.2.2 Move-Cost Adjusted Thread Assignment (MATA)

In general, for problem size n, the number of moves having move cost in O(1) is (n — 2)(n — 3)/2
and the number of moves having move cost in O(n) is 2n —3. Table 3 shows these values for various
problem sizes n. For larger size problems, ratios of |[N(¢)| in O(n) to |N(¢)| have smaller values
than those in smaller sized problems.

In this research, we assign move cost computations of a solution ¢ which are in O(1) and in
O(n) to threads which belong to different warps in a block as described below.

Since the computation of a move cost which is O(1) is smaller than the computation which is
O(n), we assign multiple number Ng of computations which are O(1) to a single thread in the
block. Also, it is necessary to assign multiple calculations of the move costs to a thread, because
the maximum number of threads in a block is limited (1024 for GTX 480 [18]).



Table 3: Neighborhood sizes for various problem sizes

Neighborhood . .
Problem size .g IN(m)| in O(1) | [N()| in O(n)| |N(m)| in O(n
size [N (n))|
n IN (n)]
n(n-1)/2 (n-2)(n-3)2 2n-3
40 780 703 77 0.099
80 3160 3003 157 0.050
120 7140 6903 237 0.033
160 12720 12403 317 0.025
200 19900 19503 397 0.020

Let C be |[N(¢)| (C =n(n—1)/2). Here, each neighbor is numbered by {0,1,2,--- ,C — 1} (see
Figure 4). Then, thread indexed as t = |k/Ng| computes moves for k € {tNg,tNg+1,--- ,tNg+
Ng — 1}. In this computation, if £ is a move in O(n), then the thread indexed as ¢ skips the
computation. The total number of threads assigned for computations in O(1) is Tg = [C'/Ng].

For each thread indexed as ¢, we need to know the move pair values (4, j) corresponding to each
move assigned to it. In a thread indexed as t, if the pair (i,7) for its initial move tNg is given,
move pairs for tNg+1,--- ,tNg+ Ng — 1 can be easily calculated. So, we prepared a lookup table
to provide the pair values only for initial move in each ¢ (move indexed as tNg).

For the computation in O(n), we assign only one computation of move cost to one thread in the
block. Although the total number of moves in O(n) is 2n — 3, we used 2n threads for these parallel
computations for implementation convenience. Since the threads for these computations must not
share the same warp with threads used for computations in O(1), the starting thread index should
be a multiple of warp size (32), which follows the index of the last thread used for computation in
O(1). Thus, the index of the first thread that computes move in O(n) is Tr_srarr = [Ts/32] % 32.

This assignment is performed according to move pairs as follows. Let r and s be a pair of
previous move. Then we assign pairs (r,z),z € {0,1,2,...,n—1} to threads indexed from T7,_garrT
to Tp—srarr+n—1 and assign pairs (y, s),y € {0,1,...,n—1} to threads indexed from T, _grarr+n
to Tr—sTArT + 2n — 1. Among these 2n threads, 3 threads assigned pairs (r,r), (s,s), and (r, s)
do nothing. Note that thread assigned pair (s,7) do the move cost computation.

Thus, the total number of threads Trorar, = T1_srarr + 2n and this kernel function is called
from CPU by kernel call “Apply TS<<< m,Trorar >>>(...argument...);”.

Figure 6 shows the thread structure in a block in computing move costs for TS in this study.
Hereafter, we refer to this thread structure as Mowve-Cost Adjusted Thread Assignment, or M AT A
for short.

6 Experiments and Discussions

6.1 Experimental platform

In this study, we used a PC which has one Intel Core i7 965 (3.2 GHz) processor and a single
NVIDIA GeForce GTX480 GPU. The OS was Windows XP Professional with NVIDIA graphics
driver Version 258.96. For CUDA program compilation, Microsoft Visual Studio 2008 Professional

10
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Figure 6: The thread structure in a block in computing move costs for TS (MATA)
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Edition with optimization option /O2 and CUDA 3.1 SDK were used.

The instances on which we tested our algorithm were taken from the QAPLIB benchmark
library [1]. QAP instances in the QAPLIB can be classified into 4 classes; (i) randomly generated
instances, (ii) grid-based distance matrix, (iii) real-life instances, and (iv) real-life like instances [24].
In this experiment, we used the following 10 instances which were classified as either (i) or (iv);
taid0a, taib0a, tai60a, tai80a, tail0Oa, tai50b, tai60b, tai80b, tail00b, and tail50b (the numbers
indicate the problem size n).

Here, note that instances classified into class (i) are much harder to solve than those in class (iv).
10 runs were performed for each instance. We did the two types of experiments in the following
subsections.

6.2 Experiment 1: Running the Algorithms for Fixed Iterations

Let ITpg be the length of TS applied to one solution which is constructed by cAS, and IT4c0o be
the iterations of cAS, respectively. Then, ITrorar = m X ITxco X ITrg represents a total length
of TS in the algorithm. We fix the value of ITrorar, = n x 50000. In this experiment, if ITro7ar
reaches n x 50000 or a known optimal solution is found, the algorithm terminates.

In runs, we set the following three types of models: (1) runs on a GPU with the MATA in Section
5.2.2, (2) runs on a GPU without using MATA, and (3) sequential runs on a CPU using a single
thread. In runs without using MATA, we assign to one thread Ng number of move calculations,
similar to how it is done in MATA. Thus, in these runs we used a total number of Ts = [C//Ng]|
threads in a block. Hereafter we will refer to this as non-MATA. In runs on a CPU, we use Intel

Core i7 965 (3.2 GHz) processor using a single thread. The parameter values are summarized in
Table 4.

Table 4: Control parameter values

Parameters - Values -
On class (i) QAP | On class (iv) QAP
m n 4n
cAS o) 0.5 0.5
4 0.4 0.5
IT 15 16n 4n
TS Tl[st—size n n
Ng n/4 n/4

The results are summarized in Table 5. First, see the effect of the approach including MATA. As
seen in the table, the run time results with MATA in T,,, were faster than those of the non-MATA
run time in 75,4, although these speedup values are different among instances. For example, on
tai60a, T4yg with MATA is 11.9 and T}, with non-MATA is 74.6, respectively. The speedup ratio
by MATA is x6.3. On tai60b, the speedup ratio by MATA is x6.0. These speedup values range
from x3.5 to x6.3 and the average value of the speedup values over 10 instances is x5.0. Thus, we
can confirm that the MATA in Section 5 is a useful approach for fast execution in solving QAPs
by ACO with TS on a GPU.

Now see the results of GPU computation of the proposed approach (MATA) compared to the
results with CPU computations. Please note that in runs on a CPU, there is no parameter Ng in
Table 4. Other parameter values are the same as runs on a GPU.
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On tailO0a, for example, GPU computation with MATA obtained 75,4 of 89.9 and CPU com-
putation obtained T},4 of 1246.6 showing a speedup of x13.9. Note here if we compare T}, of GPU
with non-MATA and Tg,, of CPU, the speedup ratio on this instance is only x3.3. The speedup
ratios of GPU with MATA to CPU are in the in the range from x13.8 to x30.3, showing their
average is x19.2.

Table 5: Results of Experiment 1

GPU Computation CPU Computation Speedup in T
(GTX 480) (17 965 3.2GHz) e
QAP A
instances T g (se€) ratio of 7' Average . CPU CPU
ATa | non | non-MATA| Errores |1 (sec)| Error(%) | "MATA | non-MATA
MATA MATA

tai40a 4.4 27.8 6.2 0.29 7441 031 16.7 2.7

tai50a 6.8 42.6 6.2 0.49 144.1| 045 21.0 34

class (i) | tai60a 11.9 74.6 6.3 0.54 25371 0.52 21.3 3.4

tai80a 42.9 143.9 34 0.51 612.6| 0.50 14.3 4.3

tail00a 89.9 372.5 4.1 0.55 1246.6 [ 0.51 13.9 3.3

taiS0b 0.3 1.5 5.6 0.0 6.318| 0.0 22.8 4.1

tai60b 0.5 3.1 6.0 0.0 15.656] 0.0 30.3 5.0

class (iv) | tai80b 8.8 30.7 3.5 0.0 138.684) 0.0 15.7 4.5

tail00b 16.7 72.6 4.3 0.0 373.03] 0.0 22.3 5.1

tail50b 367.7 1715.9 4.7 0.12 5088.874| 0.21 13.8 2.97

average - - 5.0 - - - 19.2 3.88

6.3 Experiment 2: Comparison of the TS and 2-opt Local Search

As a local search, 2-opt iterative local search is a popular one and is often used in research solving
QAPs. In this experiment, we compare the results of ACO with TS and the results of ACO with
2-opt when we solve the QAP on a GPU.

In a 2-opt iterative local search, it explores its neighborhood and accepts a solution according
to a given pivoting rule. Here we use the best improvement pivoting rule. The process is repeated
until an ITypppr number of iterations is reached or no improvement solutions are found. Here we
can note that 2-opt using best improvement pivoting rule needs to compute all neighbor move costs.
This computation is the same with the TS when we solve QAPs. Thus, we can apply MATA to
2-opt local search implementation [29].

When we perform a fair comparison of different algorithms, sometimes it is difficult to determine
their termination criteria. In experiment 2, we run the algorithms until predetermined acceptable
solutions are obtained. For acceptable solutions for class (i), we set them to be within 1.0% of the
known optimal solutions. For class (iv) instances, except tail50b, we set them be known optimal
solutions. For tail50b, we set them to be within 0.2% of the known optimal solution. 10 runs were
performed for each instance. We measured the performance by the average time to find acceptable
solutions T4 over 10 runs. For 2-opt, we set the IToopr and m of class (iv) QAPs to 4 x n and
4 x n, respectively. Other parameter values are the same as described in Table 4.

The results are summarized in Table 6. First, see the ratios of 75,4 of T'S with MATA and 2-opt
using MATA. These values on instances in class (i) are much larger than those in class (iv). For
example, on taid0a the value is 5.3, showing TS is 5.3 times faster than 2-opt. These values become
progressively larger with progressively larger problems. For example, on tail00a the value is 127.9
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times faster. However, instances in class (iv), these values are smaller than 1.0 except for on tai60b,
showing 2-opt local search is faster than TS local search. TS typically gives higher quality solutions
at the cost of higher run times. It is especially useful on class (i) instances (randomly generated
instances), but on class (iv) instances (real-life like instances), 2-opt local search work well. This
results coincide with the earlier study of MMAS in [22].

Table 6: Results of Experiment 2

GPU Computation CPU Com. | Speedup in
(GTX 480) (7965 | Ty
. ?AP Accepte;})le Loca}ll T 40 (s€C) ratios of 7', CPU
instances error (%) searc o0t o T g (s20) | GPU
MATA  [non-MATA| TS _p_TS with MATA
with MATA
. TS 0.1 0.6 70 3.0 228
tai40a 1.0 2-opt 0.5 2.0 53 43 77 16.7
. TS 0.4 25 6.6 9.9 25.4
tais0a 10 2-opt 72 313 185 4.4 398.5 55.5
. . TS 1.0 5.5 53 233 22.7
class (i) | 1ai60a 1.0 2opt 257 150.7 251 5.9 697.4 27.1
. TS 32 12.1 3.8 56.7 17.7
tai80a 10 Toopt | 2611 719.4 81.4 2.8 3872.7 14.8
) TS 71 295 4.1 108.6 153
t2i100 1.0 127.9

arena 2-opt 909.9 | 4337.0 7 4.8 20062.5 | 22.0
. TS 0.3 15 5.7 6.3 232
(ai30b 0.0 2-opt 0.2 16 08 7.1 5.0 25
. TS 0.5 3.1 6.2 15.7 312
(ai60b 0.0 2-opt 0.5 44 11 8.2 114 214
. . TS 8.1 30.8 3.8 138.7 17.1
class (iv) | (ai80b 0.0 3-opt 6.8 39.0 08 5.7 121.6 17.9
) TS 16.2 66.9 4.1 373.0 23.1
tail00b 0.0 >-opt 11.8 69.2 07 5.8 280.1 236
150 " TS 138.6 697.4 o 5.0 1815.1 13.1
2-opt 98.8 612.8 6.2 1596.8 16.2
TS 52 212

average - - - -
2-opt 5.5 23.8

Now see these results of GPU computation of 2-opt with MATA. Comparing results by CPU
computation, we can confirm that MATA is useful with 2-opt local search as is seen with TS.

7 Conclusions

In this paper, we propose an ACO for solving quadratic assignment problems (QAPs) on a GPU by
combining TS local search in CUDA. In TS on QAPs, there are n(n—1)/2 neighbors in a candidate
solution. These TS moves form two groups based on computing cost. In one group, the computing
of move cost is O(1) and in the other group, the computing of move cost is O(n).

We compute these groups of moves in parallel by assigning the computations to threads of
CUDA. In this assignment, we proposed an efficient method which we call Move-Cost Adjusted
Thread Assignment (MATA) that can reduce disabling time, as far as possible, in each thread of
CUDA. As for the ACO algorithm, we use the Cunning Ant System (cAS).

The results showed that GPU computation with MATA showed a promising speedup compared
to computation with CPU. We also confirmed MATA is useful 2-opt local search which uses less
computation cost than TS local search. Although we used a single GPU, study on colony models
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using multiple GPUs is an interesting future research direction.
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