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Abstract

This paper proposes an ant colony optimization (ACO) for solving quadratic assignment
problems (QAPs) on a graphics processing unit (GPU) by combining tabu (TS) with ACO in
CUDA (compute unified device architecture). In TS for QAP, all neighbor moves are tested.
These moves form two groups based on computing of move cost. In one group, the computing
of cost is O(1) and in the other group, the computing of move cost is O(n). We compute
these two groups of moves in parallel by assigning the computations to threads of CUDA.
In this assignment, we propose an efficient method which we call Move-Cost Adjusted Thread
Assignment (MATA). The results with GPU computation with MATA show a promising speedup
compared to computation with the CPU. It is also shown that MATA is effective in applying
2-opt local search.

Keyworks: QAP, ACO, Local search, Tabu Search, 2-opt, GPU computation.

1 Introduction

Recently, parallel computations using graphics processing units (GPUs) have become popular with
great success, especially in scientific fields such as fluid dynamics, image processing, and visualiza-
tion using particle methods [20]. These parallel computations are reported to see a speedup of tens
to hundreds of times compared to CPU computations.

Studies on parallel evolutionary computation with GPU computation are found in genetic pro-
gramming (GP) [12, 13, 30, 3], genetic algorithms (GAs) [31, 4, 32, 16, 9], evolutionary programming
(EP) [8], evolutionary strategies (ESs) [14], ant colony optimization (ACO) [2], and others.

Studies solving the quadratic assignment problem (QAP) on GPUs using an evolutionary model
are found in [27, 28, 21, 15]. In [27, 28], distributed GA models were used and no local searches
were applied. In [21], a cellular GA model was used and no local searches were used. In [15],
parallel hybrid evolutionary algorithms on CPU and GPU were proposed and applied to QAPs.

In our previous studies [27, 28], we applied GPU computation to solve quadratic assignment
problems (QAPs) using a distributed parallel GA model on GPUs. However, in those studies no
local searches were applied. In this paper, we propose a parallel ACO for QAPs on a GPU by
combining tabu search (TS) with ACO in CUDA (Compute Unified Device Architecture [17]).
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In a QAP, a solution φ is presented by a permutation of {1, 2, · · · , n} where n is the problem
size. Here we consider neighbors N(φ) which are obtained by swapping two elements (i, j) of φ. In
N(φ), there are n(n− 1)/2 neighbors. In a TS which uses N(φ) as neighbors, we need to compute
move costs for all neighbors in N(φ). Depending on the pair value (i, j), these moves can be divided
into two groups based on computing cost.

In one group, the computing of move cost is O(1) and in the other group, the computing of
move cost is O(n) [23]. We compute these groups’ moves in parallel by assigning the computations
to threads in a thread block of CUDA. In this assignment, we devised an efficient method that
reduces disabling time, as far as possible, in each thread of CUDA. As for the ACO algorithm, we
use the Cunning Ant System (cAS) which is one of the most promising ACO algorithms [26].

In the remainder of this paper, Section 2 gives a brief review of GPU computation. Then, cAS
and how we combine it with a local search are described in Section 3. Section 4 describes a TS for
combining with ACO to solve QAPs. Section 5 describes implementation of ACO with a TS on
a GPU in detail. In Section 6, results and discussions are given. Finally, Section 7 concludes the
paper.

2 A Brief Review of GPU Computation

2.1 GPU Computation with CUDA

In terms of hardware, CUDA GPUs are regarded as two-level shared-memory machines [17]. Pro-
cessors in a CUDA GPU are grouped into multiprocessors (MPs). Each MP consists of thread
processors (TPs). TPs in an MP exchange data via fast shared memory (SM). On the other hand,
data exchange among MPs is performed via VRAM. VRAM is also like main memory for processors.
So, code and data in a CUDA program are basically stored in VRAM.

The CUDA is a multi-threaded programming model. In a CUDA program, threads form two
hierarchies: the grid and thread blocks. A block is a set of threads. A block has a dimensionality of
1, 2, or 3. A grid is a set of blocks with the same size and dimensionality. A grid has dimensionality
of 1 or 2. Each thread executes the same code specified by the kernel function. A kernel-function
call generates threads as a grid with given dimensionality and size. As for GPU in this study, we
use a single GTX 480 [18].

2.2 Single Instruction, Multiple Threads

To obtain high performance with CUDA, here we need to know how each thread runs in parallel.
The approach is called single instruction, multiple threads (SIMT) [19]. In SIMT each MP executes
threads in groups of 32 parallel threads called warps.

A warp executes one common instruction at a time, so full efficiency is realized when all 32
threads of a warp agree on their execution path. However, if threads of a warp diverge via a data-
dependent conditional branch, the warp serially executes each branch path taken, disabling threads
that are not on that path, and when all paths complete, the threads converge back to the same
execution path.

In our implementation to be described in Section 5, we designed the kernel function so that the
threads that belong to the same warp will have as few branches as possible.
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3 Sequential ACO with a Local Search

As a bio-inspired computational paradigm, ACO has been applied with great success to a large
number of hard problems such as traveling selseman problem (TSP), QAP, scheduling problems,
and vehicle routing problems [6]. The first example of an ACO was Ant System (AS) [5]. Since
then, many variant ACO algorithms have been proposed as extensions of AS. Typical of these are
Ant Colony System (ACS) and MAX-MIN Ant System (MMAS) [7]. In our previous study we
proposed a new ACO algorithm called the Cunning Ant System (cAS). In this research we use cAS.

Although the ACO is a powerful metaheuristic, in many applications of ACO in solving difficult
problems, it is very common to combine it with a local search or metaheuristics [7]. In this study,
we combine cAS with a tabu search (TS) [11] which is also a powerful metaheuristic.

cAS introduced two important schemes [26]. One is a scheme to use partial solutions, which
we call cunning. In constructing a new solution, cAS uses pre-existing partial solutions. With this
scheme, we may prevent premature stagnation by reducing strong positive feedback to the trail
density. The other is to use the colony model, dividing colonies into units, which has a stronger
exploitation feature, while maintaining a certain degree of diversity among units.

cAS uses an agent called the cunning ant (c-ant). It constructs a solution by borrowing a part
of an existing solution. We call it a donor ant (d-ant). The remainder of the solution is constructed
based on τ ij(t) probabilistically as usual. Let ls represent the number of nodes of partial solution
that are constructed based on τij(t) (note that the number of nodes of partial solutions from its
d-ant is n − ls, where n is the problem size). Then cAS introduces the control parameter γ which
can define E(ls) (the average of ls) by E(ls) = n × γ. Using γ values in [0.2, 0.5] is a good choice
in cAS [26].

The colony model of cAS is shown in Figure 1. It consists of m units. Each unit consists of only
one ant∗k,t (k = 1, 2, · · · , m). In this colony model, ant∗k,t, the best individual of unit k, is always
reserved. Pheromone density τ ij(t) is then updated with ant∗k,t (k = 1, 2, · · · , m) and τ ij(t+1) is
obtained as usual as:

τij(t + 1) = ρ · τij(t) +
∑m

k=1
∆∗τk

ij(t), (1)

∆∗τk
ij(t) = 1/C∗

k,t : if (i, j) ∈ ant∗k,t, 0 : otherwise, (2)

where the parameter ρ (0≤ ρ < 1) models the trail evaporation, ∆∗τk
ij(t) is the amount of pheromone

by ant∗k,t, and C∗
k,t is the fitness of ant∗k,t. Values of τij(t + 1) are set to be within [τmin, τmax] as

in MMAS [22]. Sequential cAS with a local search can be summarized as shown in Figure 2 (please
see [26] for detail).

4 Tabu Search for Combining with ACO to Solve QAPs

4.1 Quadratic Assignment Problem (QAP)

The QAP is the problem which assigns a set of facilities to a set of locations and can be stated as
a problem to find a permutation φ which minimizes

cost(φ) =
n

∑

i=1

n
∑

j=1

aijbφ(i)φ(j), (3)

where A = (aij) and B = (bij) are two n × n matrices and φ is a permutation of {1, 2, . . . , n}.
Matrix A is a flow matrix between facilities i and j, and B is the distance between locations i and
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Figure 1: Colony model of cAS with a local search

Figure 2: Algorithm description of sequential cAS with a local search
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j. Thus, the goal of the QAP is to place the facilities on locations in such a way that the sum of
the products between flows and distances are minimized. The functional value cost(φ) in Eq. (3)
relates to both distances between locations and flows between facilities. As a result, the problem
structure of QAP is more complex and harder to solve than TSP [22].

4.2 Tabu Search for QAP of This Study

Tabu search (TS) [11] has been successfully applied to solving large combinatorial optimization
problems [10]. Although TS is a powerful metaheuristic, it is often used in conjunction with
other solution approaches such as evolutionary computation. In [22], the Robust TS (Ro-TS) by
Taillard [23] was combined with MMAS and was used as a local search in solving QAPs.

The main idea of TS is as follows [23]. TS defines a neighborhood, or a set of moves that may
be applied to a given solution to produce a new one. Among all the neighboring solutions, TS seeks
one with the best evaluation. If there are no improving moves, TS chooses one that least degrades
the objective function. In order to avoid returning to the local optimum just visited, a taboo list is
used.

There are several implementations of TS for QAP. In this study, we implement a TS to combine
cAS on a GPU and use it as a local search with short runs. In this implementation, we used Ro-TS
with some modification. In the following, we describe the TS for QAP in this study.

Following [24], the taboo list is a 2-dimensional array (n×n) of integers where the element (i, j)
identifies the value of the future iteration at which these two elements may again be exchanged
with each other. For every facility and location, the latest iteration which the facility occupied that
location is recorded. A move is taboo if it assigns both interchanged facilities to locations they had
occupied within the taboo list size (Tlist−size) most recent iterations.

The choice of Tlist−size is critical; if its value is too small, cycling may occur in the search process
while if its value is too large, appealing moves may be forbidden and lead to the exploration of
lower quality solutions, resulting in a larger number of iterations [24]. To overcome the problem
related to the search of the optimal taboo list size, Ro-TS introduced randomness in the value of
Tlist−size. Following [25], we set the taboo list size as Tlist−size × r3, where r is a uniform random
number in [0, 1).

We use the classical aspiration criterion that allows a taboo move to be selected if it leads to a
solution better than the best found so far. In [24], an aspiration function that is useful for a longer
term diversification process is proposed. In this research, we use TS as a local search in ACO, we
do not use this kind of aspiration function.

4.3 Move and Computation of Move Cost in QAP

As described in Section 4.2, TS seeks one with the best evaluation among all the neighboring
solutions. If there are no improving moves, TS chooses one that least degrades the objective
function. Thus, we need to calculate costs of all neiboring solutions efficiently. Let N(φ) be the
set of neighbors of the current solution φ. Then a neighbor, φ′ ∈ N(φ), is obtained by exchanging
a pair of elements (i, j) of φ. Then, we need to compute move costs ∆(φ, i, j) = cost(φ′) − cost(φ)
for all the neighbouring solutions. The neighborhood size of N(φ) (|N(φ)|) is n(n − 1)/2 where n
is the problem size.

When we exchange r and s elements of φ (i.e., φ(r), φ(s)), the change of cost(φ), ∆(φ, r, s), can
be computed in computing cost O(n) as follows:
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∆(φ, r, s) = arr(bφ(s)φ(s) − bφ(r)φ(r))+

ars(bφ(s)φ(r) − bφ(r)φ(s))+

asr(bφ(r)φ(s) − bφ(s)φ(r))+

ass(bφ(r)φ(r) − bφ(s)φ(s))+

n−1
∑

k=0,k 6=r,s









akr(bφ(k)φ(s) − bφ(k)φ(r))+

aks(bφ(k)φ(r) − bφ(k)φ(s))+

ark(bφ(s)φ(k) − bφ(r)φ(k))+

ask(bφ(r)φ(k) − bφ(s)φ(k))









(4)

Let φ′ be obtained from φ by exchanging r and s elements of φ, then fast computation of
∆(φ′, u, v) is obtained in computing cost O(1) if u and v satisfy the condition {u, v} ∩ {r, s} = ∅,
as follows [24]:

∆(φ′, u, v) = ∆(φ, u, v)+
(aru − arv + asv − asu)×
(bφ′(s)φ′(u) − bφ′(s)φ′(v) + bφ′(r)φ′(v) − bφ′(r)φ′(u))+

(aur − avr + avs − aus)×
(bφ′(u)φ′(s) − bφ′(v)φ′(s) + bφ′(v)φ′(r) − bφ′(u)φ′(r))

(5)

To use this fast update, additional memorization of the ∆(φ, i, j) values for all pairs (i, j) in a
table are required.

5 Implementation Details of ACO with TS on a GPU with CUDA

5.1 Overall Configuration

We coded the process of each step in Figure 2 as a kernel function of CUDA. The overall configu-
ration of ACO with TS for solving QAPs on a GPU with CUDA is shown in Figure 3.

All of the data of the algorithm are located in VRAM of GPU. They include ACO data (the
population pools (ant∗k,t, c-antk,t), the pheromone density matrix τij), TS data (the temporal
memory for move costs, the tabu list), and QAP data (the flow matrix A and distance matrix B).
Since matrices A and B are constant data, reading them is performed through texture fetching.
On SM, we located only working data which are shared among threads tightly in a block.

As for the local search in Figure 2, we implement TS described in Section 4.2. Construction of
a new candidate solution (c-ant) is performed by the kernel function
“Construct solutions(...)” in a single block. Then each m solutions are stored in VRAM. In the
kernel function “Apply tabu search(...)”, m solutions are distributed in m thread blocks.

The Apply tabu search(...) function, in each block, performs the computation of move cost in
parallel using a large number of threads. Kernel function “Pheromone update(...)” consists of 4
separate kernel functions for implementation easiness. Table 1 summarizes these kernel functions.

Kernel functions are called from the CPU for each ACO iteration. In these iterations of the
algorithm, only the best-so-far solution is transferred to CPU from GPU. It is used for checking
whether termination conditions are satisfied. Thus, in this implementation, overhead time used
for data transfer between CPU and GPU can be ignored. In the end of a run, whole solutions are
transferred from GPU to CPU.

Table 2 shows the distribution of computation time of cAS in solving QAP with sequential runs
on a CPU. Here, we used QAP instances tai40a, tai50a, tai60a, tai80a, tai100a, tai50b, tai60b,
tai80b, tai100b, and tai150b which will be used in experiments in Section 6. The conditions of the
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Figure 3: Configuration of ACO with TS for solving QAPs on a GPU with CUDA

Table 1: Summary of kernel functions. n is the problem size, m is the number of agents, and
TTOTAL is the total number of threads in a block (see Section 5.2.2)

grid block

Initialize_pheromone density() n n  ij =t 0

Evaporate_pheromone() n n  ij  *=  

Lay_pheromone() m 1  ij  += 1/cost

Max_min_pheromone() n n adjust  ij  in [ min ,  max ]

Construct

solutions
Constuct_solutions(…) m 1 Construct c-ant

Local search Apply_tabu_search(…) m T TOTAL improve solutions by TS

Update

pheromone

density

dim3
Kernel functions Function
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runs are the same as will be described in Section 6. From this table, we can see that TS uses over
99.9% of the computation time. Thus, we can see that the efficient implementation of TS is the
most important factor in increasing speedup of this algorithm.

Table 2: Distribution of computation time of cAS in solving QAP with sequential runs on a CPU

Instances
Construction

of solusions
TS

Updating

Trail

tai40a 0.007% 99.992% 0.001%
tai50a 0.005% 99.994% 0.000%
tai60a 0.004% 99.996% 0.000%
tai80a 0.002% 99.997% 0.000%

tai100a 0.002% 99.998% 0.000%
tai50b 0.022% 99.976% 0.002%
tai60b 0.017% 99.982% 0.001%
tai80b 0.011% 99.988% 0.001%

tai100b 0.008% 99.991% 0.000%
tai150b 0.005% 99.995% 0.000%

5.2 Efficient Implementation of TS with CUDA

5.2.1 An Inefficient Assignment of Move Cost Computations to Threads in a Block

In TS in this study, we use a table which contains move costs so that we can compute the move
cost in O(1) using Eq. (5). For each move, we assign an index number as shown in Figure 4. In this
example, we assume a problem size of n = 8. Thus, the neighborhood size |N(φ)| is 8 × 7/2 = 28.
As described in Section 5.1, each set of move cost calculations of an agent is being done in one
block. The simplest approach to computing the move costs in parallel in a block is to assign each
move indexed i to the corresponding sequential thread indexed i in a block.

Figure 4: Indexing of moves (n = 8)

Here, consider a case in which a solution φ′ is obtained by exchanging positions 2 and 4 of a
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current solution φ in a previous TS iteration. Then the computation of ∆(φ′, u, v), shown numbers
in gray squares, must be performed in O(n) using Eq. (4). The computation of the remaining
moves are performed in O(1) quickly using Eq. (5).

Thus, if we simply assign each move to the block thread, threads of a warp diverge via the
conditional branch ({u, v} ∩ {2, 4} = ∅) into two calculations, threads in one group run in O(n) of
Eq. (4) and threads in the other group run in O(1) of Eq. (5). In threads of CUDA, all instructions
are executed in SIMT (please see Section 2.2 for detail). As a result, the computation time of each
thread in a warp becomes longer, and we cannot receive the benefit of the fast calculation of Eq.
(5) in GPU computation. Figure 5 shows this situation for the case shown in Figure 4. Thus, if
threads which run in O(1) and threads which run in O(n) co-exist in the same warp, then their
parallel computation time in the warp becomes longer than their own respective computation time.

Figure 5: Simple assignment of calculations of move costs to threads in a block. Due to disabling
time in SIMT, the parallel computation by thread in a block is inefficient.

5.2.2 Move-Cost Adjusted Thread Assignment (MATA)

In general, for problem size n, the number of moves having move cost in O(1) is (n − 2)(n − 3)/2
and the number of moves having move cost in O(n) is 2n−3. Table 3 shows these values for various
problem sizes n. For larger size problems, ratios of |N(φ)| in O(n) to |N(φ)| have smaller values
than those in smaller sized problems.

In this research, we assign move cost computations of a solution φ which are in O(1) and in
O(n) to threads which belong to different warps in a block as described below.

Since the computation of a move cost which is O(1) is smaller than the computation which is
O(n), we assign multiple number NS of computations which are O(1) to a single thread in the
block. Also, it is necessary to assign multiple calculations of the move costs to a thread, because
the maximum number of threads in a block is limited (1024 for GTX 480 [18]).
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Table 3: Neighborhood sizes for various problem sizes

Neighborhood

size |N (n )|
|N(n)| in O (1) |N(n)| in O (n )

n (n -1)/2 (n -2)(n -3)/2 2n -3

40 780 703 77 0.099

80 3160 3003 157 0.050

120 7140 6903 237 0.033

160 12720 12403 317 0.025

200 19900 19503 397 0.020

Problem size

n

|N(n)|  in O (n )

|N (n )|

Let C be |N(φ)| (C = n(n−1)/2). Here, each neighbor is numbered by {0, 1, 2, · · · , C −1} (see
Figure 4). Then, thread indexed as t = ⌊k/NS⌋ computes moves for k ∈ {tNS , tNS + 1, · · · , tNS +
NS − 1}. In this computation, if k is a move in O(n), then the thread indexed as t skips the
computation. The total number of threads assigned for computations in O(1) is TS = ⌈C/NS⌉.

For each thread indexed as t, we need to know the move pair values (i, j) corresponding to each
move assigned to it. In a thread indexed as t, if the pair (i, j) for its initial move tNS is given,
move pairs for tNS + 1, · · · , tNS + NS − 1 can be easily calculated. So, we prepared a lookup table
to provide the pair values only for initial move in each t (move indexed as tNS).

For the computation in O(n), we assign only one computation of move cost to one thread in the
block. Although the total number of moves in O(n) is 2n− 3, we used 2n threads for these parallel
computations for implementation convenience. Since the threads for these computations must not
share the same warp with threads used for computations in O(1), the starting thread index should
be a multiple of warp size (32), which follows the index of the last thread used for computation in
O(1). Thus, the index of the first thread that computes move in O(n) is TL−START = ⌈TS/32⌉×32.

This assignment is performed according to move pairs as follows. Let r and s be a pair of
previous move. Then we assign pairs (r, x), x ∈ {0, 1, 2, ..., n−1} to threads indexed from TL−SATRT

to TL−START +n−1 and assign pairs (y, s), y ∈ {0, 1, ..., n−1} to threads indexed from TL−START +n
to TL−START + 2n − 1. Among these 2n threads, 3 threads assigned pairs (r, r), (s, s), and (r, s)
do nothing. Note that thread assigned pair (s, r) do the move cost computation.

Thus, the total number of threads TTOTAL = TL START + 2n and this kernel function is called
from CPU by kernel call “Apply TS<<< m, TTOTAL >>>(...argument...);”.

Figure 6 shows the thread structure in a block in computing move costs for TS in this study.
Hereafter, we refer to this thread structure as Move-Cost Adjusted Thread Assignment, or MATA
for short.

6 Experiments and Discussions

6.1 Experimental platform

In this study, we used a PC which has one Intel Core i7 965 (3.2 GHz) processor and a single
NVIDIA GeForce GTX480 GPU. The OS was Windows XP Professional with NVIDIA graphics
driver Version 258.96. For CUDA program compilation, Microsoft Visual Studio 2008 Professional

10



Figure 6: The thread structure in a block in computing move costs for TS (MATA)
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Edition with optimization option /O2 and CUDA 3.1 SDK were used.

The instances on which we tested our algorithm were taken from the QAPLIB benchmark
library [1]. QAP instances in the QAPLIB can be classified into 4 classes; (i) randomly generated
instances, (ii) grid-based distance matrix, (iii) real-life instances, and (iv) real-life like instances [24].
In this experiment, we used the following 10 instances which were classified as either (i) or (iv);
tai40a, tai50a, tai60a, tai80a, tai100a, tai50b, tai60b, tai80b, tai100b, and tai150b (the numbers
indicate the problem size n).

Here, note that instances classified into class (i) are much harder to solve than those in class (iv).
10 runs were performed for each instance. We did the two types of experiments in the following
subsections.

6.2 Experiment 1: Running the Algorithms for Fixed Iterations

Let ITTS be the length of TS applied to one solution which is constructed by cAS, and ITACO be
the iterations of cAS, respectively. Then, ITTOTAL = m× ITACO × ITTS represents a total length
of TS in the algorithm. We fix the value of ITTOTAL = n× 50000. In this experiment, if ITTOTAL

reaches n × 50000 or a known optimal solution is found, the algorithm terminates.

In runs, we set the following three types of models: (1) runs on a GPU with the MATA in Section
5.2.2, (2) runs on a GPU without using MATA, and (3) sequential runs on a CPU using a single
thread. In runs without using MATA, we assign to one thread NS number of move calculations,
similar to how it is done in MATA. Thus, in these runs we used a total number of TS = ⌈C/NS⌉
threads in a block. Hereafter we will refer to this as non-MATA. In runs on a CPU, we use Intel
Core i7 965 (3.2 GHz) processor using a single thread. The parameter values are summarized in
Table 4.

Table 4: Control parameter values

On class (i) QAP On class (iv) QAP

m n 4n

 0.5 0.5

 0.4 0.5

IT TS 16n 4n

T list-size n n

N S n /4 n /4

TS

Values

cAS

Parameters

The results are summarized in Table 5. First, see the effect of the approach including MATA. As
seen in the table, the run time results with MATA in Tavg were faster than those of the non-MATA
run time in Tavg, although these speedup values are different among instances. For example, on
tai60a, Tavg with MATA is 11.9 and Tavg with non-MATA is 74.6, respectively. The speedup ratio
by MATA is x6.3. On tai60b, the speedup ratio by MATA is x6.0. These speedup values range
from x3.5 to x6.3 and the average value of the speedup values over 10 instances is x5.0. Thus, we
can confirm that the MATA in Section 5 is a useful approach for fast execution in solving QAPs
by ACO with TS on a GPU.

Now see the results of GPU computation of the proposed approach (MATA) compared to the
results with CPU computations. Please note that in runs on a CPU, there is no parameter NS in
Table 4. Other parameter values are the same as runs on a GPU.
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On tai100a, for example, GPU computation with MATA obtained Tavg of 89.9 and CPU com-
putation obtained Tavg of 1246.6 showing a speedup of x13.9. Note here if we compare Tavg of GPU
with non-MATA and Tavg of CPU, the speedup ratio on this instance is only x3.3. The speedup
ratios of GPU with MATA to CPU are in the in the range from x13.8 to x30.3, showing their
average is x19.2.

Table 5: Results of Experiment 1

ratio of T avg CPU CPU

MATA
non-

MATA

non-MATA

MATA

MATA non-MATA

tai40a 4.4 27.8 6.2 0.29 74.4 0.31 16.7 2.7

tai50a 6.8 42.6 6.2 0.49 144.1 0.45 21.0 3.4

tai60a 11.9 74.6 6.3 0.54 253.7 0.52 21.3 3.4

tai80a 42.9 143.9 3.4 0.51 612.6 0.50 14.3 4.3

tai100a 89.9 372.5 4.1 0.55 1246.6 0.51 13.9 3.3

tai50b 0.3 1.5 5.6 0.0 6.318 0.0 22.8 4.1

tai60b 0.5 3.1 6.0 0.0 15.656 0.0 30.3 5.0

tai80b 8.8 30.7 3.5 0.0 138.684 0.0 15.7 4.5

tai100b 16.7 72.6 4.3 0.0 373.03 0.0 22.3 5.1

tai150b 367.7 1715.9 4.7 0.12 5088.874 0.21 13.8 2.97

- - 5.0 - - - 19.2 3.88

Speedup in T avg

T avg (sec)

CPU Computation

(i7 965 3.2GHz)

Error(%)
Average

Error(%)

T avg (sec)

GPU Computation

(GTX 480)

average

class (i)

class (iv)

QAP

instances

6.3 Experiment 2: Comparison of the TS and 2-opt Local Search

As a local search, 2-opt iterative local search is a popular one and is often used in research solving
QAPs. In this experiment, we compare the results of ACO with TS and the results of ACO with
2-opt when we solve the QAP on a GPU.

In a 2-opt iterative local search, it explores its neighborhood and accepts a solution according
to a given pivoting rule. Here we use the best improvement pivoting rule. The process is repeated
until an IT2OPT number of iterations is reached or no improvement solutions are found. Here we
can note that 2-opt using best improvement pivoting rule needs to compute all neighbor move costs.
This computation is the same with the TS when we solve QAPs. Thus, we can apply MATA to
2-opt local search implementation [29].

When we perform a fair comparison of different algorithms, sometimes it is difficult to determine
their termination criteria. In experiment 2, we run the algorithms until predetermined acceptable
solutions are obtained. For acceptable solutions for class (i), we set them to be within 1.0% of the
known optimal solutions. For class (iv) instances, except tai150b, we set them be known optimal
solutions. For tai150b, we set them to be within 0.2% of the known optimal solution. 10 runs were
performed for each instance. We measured the performance by the average time to find acceptable
solutions Tavg over 10 runs. For 2-opt, we set the IT2OPT and m of class (iv) QAPs to 4 × n and
4 × n, respectively. Other parameter values are the same as described in Table 4.

The results are summarized in Table 6. First, see the ratios of Tavg of TS with MATA and 2-opt
using MATA. These values on instances in class (i) are much larger than those in class (iv). For
example, on tai40a the value is 5.3, showing TS is 5.3 times faster than 2-opt. These values become
progressively larger with progressively larger problems. For example, on tai100a the value is 127.9
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times faster. However, instances in class (iv), these values are smaller than 1.0 except for on tai60b,
showing 2-opt local search is faster than TS local search. TS typically gives higher quality solutions
at the cost of higher run times. It is especially useful on class (i) instances (randomly generated
instances), but on class (iv) instances (real-life like instances), 2-opt local search work well. This
results coincide with the earlier study of MMAS in [22].

Table 6: Results of Experiment 2

CPU Com.

(i7 965)

Speedup in

T avg

MATA non-MATA

TS 0.1 0.6 7.0 2.0 22.8

2-opt 0.5 2.0 4.3 7.7 16.7

TS 0.4 2.5 6.6 9.9 25.4

2-opt 7.2 31.3 4.4 398.5 55.5

TS 1.0 5.5 5.3 23.3 22.7

2-opt 25.7 150.7 5.9 697.4 27.1

TS 3.2 12.1 3.8 56.7 17.7

2-opt 261.1 719.4 2.8 3872.7 14.8

TS 7.1 29.5 4.1 108.6 15.3

2-opt 909.9 4337.0 4.8 20062.5 22.0

TS 0.3 1.5 5.7 6.3 23.2

2-opt 0.2 1.6 7.1 5.0 22.5

TS 0.5 3.1 6.2 15.7 31.2

2-opt 0.5 4.4 8.2 11.4 21.4

TS 8.1 30.8 3.8 138.7 17.1

2-opt 6.8 39.0 5.7 121.6 17.9

TS 16.2 66.9 4.1 373.0 23.1

2-opt 11.8 69.2 5.8 280.1 23.6

TS 138.6 697.4 5.0 1815.1 13.1

2-opt 98.8 612.8 6.2 1596.8 16.2

TS 5.2 21.2

2-opt 5.5 23.8

5.3

18.5

25.1

81.4

127.9

0.8

1.1

0.8

0.7

0.7

-- -

ratios of T avg

0.2

1.0

1.0

1.0

1.0

1.0

0.0

average -

tai150b

0.0

0.0

0.0

tai50b

tai60b

tai80b

tai100b

class (i)

class (iv)

tai40a

tai50a

tai60a

tai80a

tai100a

QAP

instances

GPU Computation

(GTX 480)

T avg (sec)

Acceptable

error (%)

Local

search
T avg (sec) CPU

GPU

with MATA
2-opt

TS

with MATA

2-opt

TS

Now see these results of GPU computation of 2-opt with MATA. Comparing results by CPU
computation, we can confirm that MATA is useful with 2-opt local search as is seen with TS.

7 Conclusions

In this paper, we propose an ACO for solving quadratic assignment problems (QAPs) on a GPU by
combining TS local search in CUDA. In TS on QAPs, there are n(n−1)/2 neighbors in a candidate
solution. These TS moves form two groups based on computing cost. In one group, the computing
of move cost is O(1) and in the other group, the computing of move cost is O(n).

We compute these groups of moves in parallel by assigning the computations to threads of
CUDA. In this assignment, we proposed an efficient method which we call Move-Cost Adjusted
Thread Assignment (MATA) that can reduce disabling time, as far as possible, in each thread of
CUDA. As for the ACO algorithm, we use the Cunning Ant System (cAS).

The results showed that GPU computation with MATA showed a promising speedup compared
to computation with CPU. We also confirmed MATA is useful 2-opt local search which uses less
computation cost than TS local search. Although we used a single GPU, study on colony models
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using multiple GPUs is an interesting future research direction.

8 Acknowledgments

This research is partially supported by the Ministry of Education, Culture, Sports, Science and
Technology of Japan under Grant-in-Aid for Scientific Research No. 22500215.

References

[1] QAPLIB - a quadratic assignment problem library, 2009. www.seas.upenn.edu/qaplib.

[2] H. Bai, D. OuYang, X. Li, L. He, and H. Yu. Max-Min ant system on GPU with CUDA. In
International Conference on Innovative Computing, pages 801–804, 2009.

[3] W. Banzhaf, S. Harding, W. Langdon, and G. Wilson. Accelerating genetic programming
through graphics processing units. Genetic Programming Theory and Practice VI, 12(12):1–
19, 2009.

[4] T. F. Clayton, L. N. Patel, G. Leng, A. F. Murray, and I. A. B. Lindsay. Rapid evaluation
and evolution of neural models using graphics card hardware. In Genetic and Evolutionary
Computation Conference, pages 299–306, 2008.

[5] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimization by a colony of
cooperating agents. IEEE Trans. on SMC-Part B, 26(1):29–41, 1996.
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