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candidate solution is found. To speed up the convergence to an adequate solution, hierarchical local search is

used on each evaluated solution. The results show that the hybrid genetic algorithm with hierarchical local search
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Abstract

This paper proposes a hybrid genetic algorithm to perform image segmentation based on
applying the q-state Potts spin glass model to a grayscale image. First, the image is converted
to a set of weights for a q-state spin glass and then a steady-state genetic algorithm is used
to evolve candidate segmented images until a suitable candidate solution is found. To speed
up the convergence to an adequate solution, hierarchical local search is used on each evaluated
solution. The results show that the hybrid genetic algorithm with hierarchical local search is
able to efficiently perform image segmentation. The necessity of hierarchical search for these
types of problems is also clearly demonstrated.
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1 Introduction

Image segmentation is the process of dividing an image into multiple distinct segments. It is
one of the most important applications in computer vision and image processing. Good image
segmentation can be used to help emphasize boundaries and locate distinct objects in images and
is often used as a preliminary step in computer vision. Unfortunately, segmentation is also one of
the most difficult tasks in image processing.
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This paper focuses on image segmentation of grayscale images using the q-state Potts model.
While this model has been used in the past to perform image segmentation, the previous methods
either used a Monte Carlo approach that takes exponential time as image size increases (Descombes,
Moctezuma, Mâıtre, & Rudant, 1996; Neirotti, Kurcbart, & Caticha, 2003; Peng, Urbanc, Cruc,
Hyman, & Stanley, 2003; Tanaka, 2002) or directly applied the q-state model to the original image
itself (Bentrem, 2009). In this paper, the input image is used to generate a set of weights for
a q-state spin glass. Then candidate solutions are evolved based on these set of weights using a
genetic algorithm (GA). The candidate solution that results in the lowest spin glass energy is the
final image segmentation returned by the algorithm.

While GAs have been used on an almost endless variety of problems (Goldberg, 1989), using a
GA for image segmentation presents an interesting challenge. Even relatively small images have a
large number of data points compared to most GA applications. This can lead to long convergence
times as well as an increased cost to crossover and fitness functions. To help alleviate these problems,
it is helpful to use as small a population as possible. We achieve this by using two methods. First, a
steady-state genetic algorithm is used to help preserve diversity. Second, a powerful local search is
needed to allow a small population size, both to ensure a small initial population size is sufficient and
to decrease the convergence time to an adequate solution. A hierarchical local search is used with
the steady-state GA to create a powerful hybrid GA capable of performing image segmentation. In
addition, we note that it is possible for two segmented images to have the same physical regions.
To overcome this problem, a transformation is used to map different candidate solutions to the
same region assignments when performing crossover.

The paper is organized as follows. Section 2 describes the q-state Potts model and how we
transform the input image into a set of weights. Section 3 decribes the hybrid GA used to evolve
candidate image segmentations. Section 4 covers the experimental setup as well as the experimental
results. Finally, section 5 summarizes and concludes the paper.

2 Q-state Potts Model

Spin glasses are prototypical models for disordered systems and have played a central role in
statistical physics during the last three decades (Binder & Young, 1986; Fischer & Hertz, 1991;
Mezard, Parisi, & Virasoro, 1987; Young, 1998). A simple model to describe a finite-dimensional
Potts spin glass is typically arranged on a regular 2D or 3D grid where each node i corresponds to
a spin si and each edge 〈i, j〉 corresponds to a coupling between two spins si and sj. Each edge has
a real value Ji,j associated with it that defines the relationship between the two connected spins.
In general, the computational task is to find an assignment of spins such that it minimizes the total
energy of the system.

In this paper, the first step to our goal is to map a grayscale image to a set of spin glass weights.
First we convert the grayscale image into a set of weights using a method similar to reference (Peng,
Urbanc, Cruc, Hyman, & Stanley, 2003). The weight Ji,j between neighboring pixels at locations
i and j (spins) is given by:

Ji,j = 1−
∆i,j

θ∆̄
, (1)

where ∆i,j is the absolute grayscale difference between the neighboring pixels in the original image
and ∆̄ is the average difference between neighboring pixels in the entire image. From this equation,
we see that if the difference between pixels i and j is large, then the corresponding weight parameter
Ji,j will be low. On the other hand, the closer the values of pixels i and j, the closer the weight
will be to 1.
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The overall goal is to minimize the energy of the q-state spin glass. Using the Kronecker δ
function (which is 1 if the values are equal and 0 othrwise), energy is defined as

E = −
∑

〈i,j〉

Ji,jδσiσj
, (2)

The strength of the interaction is given by the weight Ji,j . However, the two spins only interact if
they are nearest neighbors and are in the same spin state since δσi,σj

is the Kronecker δ function.

Once given a set of weights, it is now possible to segment our image by assigning each pixel in a
new image to one of a range of possible grayscale colors corresponding to unique regions and then,
finding the set of assignments to such regions that minimize the energy E. This works since using
the set of weights and trying to minimize the overall energy of the system yields a high probability
that neighboring pixels that are nearly the same shade of grayscale values in the input image will
be assigned to the same region in the segmented image. On the other hand, if two neighboring
pixels are of very different gray scale levels they will most likely be placed into different regions in
the segmented image result.

3 Algorithm

The steady-state genetic algorithm (GA) (Goldberg, 1989; Holland, 1975) evolves a population of
candidate solutions typically represented by strings of a fixed length. The initial population is
generated at random according to a uniform distribution over all of those strings. Each iteration
starts by randomly selecting two parents and then variation operators such as crossover is used to
create a new solution. The new candidate solution is then incorporated into the population using
a replacement operator. The run is terminated when some termination criteria has been met. The
basic steady-state GA procedure is laid out in Algorithm 1.

Algorithm 1 Steady-state GA pseudocode
g ← 0
generate initial population P (0)
while (not done) do

select two parents a and b randomly from the population
generate new individual c by crossover of a and b
perform mutation on new individual
if Fitness(b) > Fitness(a) then

Swap(a,b)
end if

if Fitness(c) > Fitness(b) then
b← c

end if

g ← g + 1
end while

In this work, we have used two different variation operators. The first, the crossover operator,
described in Section 3.1, swaps a rectangular section between the two images with a transformation
applied before crossover to ensure that the segment color schemes are consistent between the two
parents. Then, we apply the mutation operator, with each character of the solution string having
a probability of 1/n (where n is the number of pixels in the image) to be assigned randomly to one
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(a) Image a (b) Image b

Figure 1: Two images with identical segmented regions but different region assignments.

of the regions. Finally, a hierarchical local searcher is used on each solution when it is evaluated
to improve performance. If the new candidate solution is of higher fitness than the least fit parent
solution, it replaces the least fit parent solution in the population.

3.1 Crossover Operator

The goal of our crossover operator is to take parent images a and b and create a new image c that
incorporates elements of both the parent images. First, we randomly select a pivot pixel as the
pixel that will be in the center of the rectangular region. For an image of size x columns and y
rows, a rectangular region of size

√

x/2 columns and
√

y/2 rows is used, centered on the pivot
pixel. This region size was used to ensure that the crossed over region was relatively small as image
size increased, to minimize disruption during crossover. Then, from image a, add those pixels in
the rectangular region to image c and all other pixels in c are set to the values in image b.

The application of this crossover operator without any transformation leads to a poor quality
to the new child. This is because the individual segmented images can be essentially segmented
the same but be done using different numbered assignments. Figure 1 shows two simple segmented
images, segmented between black, white, and gray. It is clear that using a rectangular crossover
between these two images would result in a poor child solution. To attempt to alleviate this
problem, we perform a transformation on the rectangular region from image a to keep its region
assignments as similar as possible to b before adding it to the new individual c. This transformation
is created using the possible region assignments q ∈ {0 . . . r}. For each pixel in the entire images
a and b at each stage, we calculate the conditional probability that given a source pixel in a that
is assigned to a state qm, the probability that in b it is assigned to a state qn. An example of one
of these conditional probability tables is given in Table 1. In this table, the columns represent
assignments in image a and the rows represent an assignment in image b, with the values in the
table representing the conditional probability that a pixel in image a is of value p in image b.

We use a greedy algorithm to create the transformation from image a to b. All the pixels taken
from the target rectangular region in a are mapped to the highest conditional probabilities of their
region assignment in b before being added to the new individual c. Referring back to Figure 1,
it is clear that the best transformation from image a to b would be to map all white pixels to
gray and all gray pixels to white. In this way, the disruption to similar regions in a and b is
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p = 0 p = 1 p = 2 p = 3

p = 0 0.7902 0.0022 0.0989 0.1998

p = 1 0.0828 0.0162 0.0603 0.0532

p = 2 0.0505 0.6261 0.4766 0.6950

p = 3 0.0765 0.3554 0.3641 0.0520

Table 1: Example conditional probability table generated during crossover that shows the proba-
bility that a pixel p in image a is assigned to a different state in image b.

minimized when combined in c. For a more complex example,using the data in Table 1, the highest
conditional probability results in assigning segment 0 of image a to segment 0 of image b. The next
highest assigns segment 2 of image a to segment 3 of b. Continuing on, the final transform array is
T = [0, 1, 3, 2].

3.2 Hierarchical Local Search

Due to the large number of variables in each solution string, it is important that a local search be
used with the GA to allow us to use a smaller population and to ensure quick convergence to an
adequate solution. Initially, a simple deterministic hill climbing (DHC) local search was used. This
hill climbing algorithm would find the largest possible fitness gain by changing any single variable.
This process is repeated until no single variable change would lead to an improvement.

From other works on local search in spin glasses (Pelikan, 2005), a dramatic increase in seg-
mented image quality was expected. For example, it might be expected that local search would
expand a region to cover an entire monocolored region of an image. Unfortunately, this was not
the case. Instead, the local search repeatedly got stuck in many poor local optima.

Figure 2a shows a simple example image of only 3 shapes with the exact same color in all shapes.
Figure 2b shows the segment assignment after an individual is randomly initialized. Figure 2c shows
the segmentation after the application of DHC. We see in this image that instead of assigning the
monocolored area to the same region, the local search gets stuck and the final assignments are
many different patchy areas that are of the same color.

Figure 3 shows the reason for the local search getting stuck in poor local optima. Figure 3
shows a subset of a segmented image where the original image is all of the same color. This implies
that assignments to adjacent segments that are the same have zero cost and all others have the
same penalty. The local search has assigned the lower diagonal part of the image to gray. However,
at this point, the local search gets stuck. This is due to a having 3 neighbors that give penalties
(due to being of different segment assignments when the underlying color was the same). If a is
assigned to gray, those 3 penalties go away but an additional 5 extra penalty terms are added.
With different segmented solutions containing many patches assigned to various regions even in
same color areas, this resulted in the crossover operator having poor performance.

Examining Figure 2a led us to consider a hierarchical local search. The hierarchical local search
algorithm works by initially performing the simple DHC. Then, all contiguous colored regions are
identified and treated as a single region assignment. The local search is then performed again, this
time attempting to assign each region to a new color and seeing the fitness gain. The assignment
that leads to the highest fitness gain is then taken, which usually leads to some regions being
merged together. This process is then repeated with the new set of regions. The overall process
terminates when no region, when fully assigned to a new color, leads to a fitness gain.

Figure 4 shows several steps of the hierarchical search in action. We see that over time, the
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(a) Initial image (b) Random segmentation

(c) Segmentation after DHC

Figure 2: An image containing 3 monocolor shapes and its corresponding randomly initialized
segmentation and the segmentation result after DHC. Note that local search gets stuck in many
poor local optima.

hierarchical search merges regions together and eventually, leads to the same color areas being
completely covered by the same region assignment as we might have expected initially from just
using DHC. In Figure 4a, it is hard to perceive the original shapes. However, by step = 50 in
Figure 4b the shapes begin to become clear. After the final hierarchical search step, the original
image is much more noticeable but clearly more work needs to be done than simply the hierarchical
local search.

To further emphasize the necessity of local search, the GA was run on the 3 shapes image with
different local search methods with the population set to 50 initial randomly generated solutions.
Figures 5 shows the resulting image segmentations at generation g = 1, g = 100 and g = 1000 using
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Figure 3: A subset of a segmented image with associated penalties to fitness before and after a is
switched between regions.

no local search, DHC and the hierarchical local searcher. Figures 5a-c are the results using no local
search and even after 1000 generations there is little to distinguish the final segmentation from the
initial segmentation result. Using DHC in Figures 5d-f, we do see that as the generations increase,
the segmented regions are getting larger, so the image is slowly converging to the solution. Even
for g = 1000 however, the segmentation is of poor quality and it is very hard to distinguish the
shapes in the initial image. When the GA is run with the hierarchical search as in Figures 5g-i,
we see a dramatic improvement, with the GA able to find the optimal solution in 100 generations.
We also explored performance with and without region maps and while we would expect the lack
of region mapping to hurt good segmentations, the hierarchical local searcher seems to be more
important than a crossover that minimizes disruption.

This hierarchical search process is considerably more computationally expensive than simple
DHC. However, when determining the gain or loss in fitness from switching the color assignment
of a region, it is only necessary to check the gain along the border between different regions. This
is because internal to the same region, switching it entirely to a different color does not change
the overall fitness value for that region. In addition, as the hierarchical local search progresses
and changes in some region’s color result in merged regions, some boundary pixels become internal
pixels and are no longer considered. Also of note is that only the initial hierarchical local searches
require many steps since the individual regions become much simpler after the initial search.

4 Experiments

This section covers both the experimental setup used for the hybrid GA and the resulting segmented
images.
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(a) Step = 1 (b) Step = 50

(c) Step = 100 (d) Step = 143

Figure 4: Several steps of the hierarchical local search as it merges regions together over time.
Step = 1 is after the first merge of a region and step = 143 is after the final region merge with no
other region merges giving any gains.

4.1 Experimental Setup

For an image of x columns and y rows, the GA evolves strings of size n = xy. The values of each
individual variable in the string can be set to q ∈ {0 . . . r− 1}, where r is the maximum number of
different region assignments. In this paper, we have used the value r = 4, setting the cardinality
of the variables in the solution strings to 4. The initial population for all experiments was set at
N = 50, with all candidate solutions being initialized to random values. The hybrid GA was run
for 1000 generations. All input images were converted to 8-bit grayscale to contain 256 distinct
gray levels and this image was then used to generate a weights matrix for fitness evaluation.
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(a) g = 1 no ls (b) g = 100 no ls (c) g = 1000 no ls

(d) g = 1 DHC (e) g = 100 DHC (f) g = 1000 DHC

(g) g = 1 HLS (h) g = 100 HLS (i) g = 1000 HLS

Figure 5: Resulting best fitness segmentations on the 3 shapes image after runs of the GA to
different numbers of generations using no local search, DHC and hierarchical local search (HLS).

4.2 Results

In this subsection, we will examine two different digital photographs and the resulting segmentations
after running the hybrid GA on them. In addition, we will examine the segmented image after
coloring the regions depending on the average color of that segment in the original image. Finally,
we will examine the two images segmented using meanshift segmentation and compare the results
to the hybrid GA segmentation.
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(a) Initial image (b) Segmented image

(c) Image with each segment identified by
its average color

Figure 6: An image of a house, the resulting final segmentation using the hybrid GA, and then a
segmented image with each segment colored by its average color in the original image.

Figure 6a shows a digital photograph of a house of size 150×100 pixels. The resulting segmented
image found by the GA is shown in Figure 6b. In this image, we can see many distinct shapes
corresponding to distinct regions in the original image. Finally, Figure 6c shows the segmented
image with each segment colored by the average color of that segment in the original image. The
average colored segmented image looks very similar to the original image except with much more
clearly defined areas.

Figure 7 shows the digital image of a dog on a sofa of size 160 × 128 pixels. Figure 7b shows
the resulting segmented image after running the GA. While this segmentation is not as clear as
the results in the previous case, the averaged color image in Figure 7c shows more clearly defined
edges than in the original image.

For comparison the two images were segmented using meanshift segmentation with the quantization-
based method (Comaniciu & Meer, 1997), one of the current strongest segmentation algorithms.
Figure 8a is intermediate result of the segmentation of the house image showing the borders be-
tween regions. Figure 8b is the final segmentation result with 17 colors. There is a strong similarity
between the two segmentation results in Figure 7c and Figure 8b. Many large regions have been
segmented in much the same way between algorithms. For example, the doors and driveway are
easily identified in both, as well as different areas of the roof.

Figure 9 shows the results of meanshift segmentation on the dog on a couch image, with Figure 9a
showing the region boundaries identified. Figure 9b shows the final results of the segmentation into
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(a) Initial image (b) Segmented image

(c) Image with each segment identified by
its average color

Figure 7: An image of a dog on a sofa, the resulting final segmentation using the hybrid GA, and
a segmented image with each segment colored by its average color in the original image.

(a) Intermediate (b) Final

Figure 8: Intermediate results and final results of meanshift segmentation on the house image
segmented into 17 colors.
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(a) Intermediate (b) Final

Figure 9: Intermediate results and final results of meanshift segmentation on the dog on couch
image segmented into 26 colors.

22 colors. One notable difference between the two algorithms can be seen in the intermediate results
shown in Figure 7b and Figure 9a, with the dog divided into many more regions by the meanshift
algorithm. Much as with the house image, the final results of segmentation are very similar, with
major regions differentiated in both images.

5 Summary and Conclusions

This paper describes a hybrid GA to perform image segmentation on gray scale images. First, the
images were transformed to a set of weights for the q-state Potts spin glass model, which can then
be used to calculate the quality of an image segmentation of the original image. A hierarchical local
search was used to improve solution quality upon each evaluation. A rectangular region crossover
operator was used to generate new candidate segmentations, with the region transformed to ensure
that the regions combined in the new candidate solution followed the same approximate region color
scheme. The hybrid GA was then used to evolve candidate solutions of segmented images. The
results show that the hybrid GA is able to efficiently generate segmented images of high quality.

This paper shows that while using a GA on images can be difficult due to the large number of
variables and many local optima, it is still possible to overcome these problems using a powerful
local search method such as the hierarchical local search used in this paper.

One of the key findings of this paper is the necessity of hierarchical local search on this type of
problem. Since simple local search has often been shown to improve performance on many problems
in GAs, a similar result was expected on image segmentation. However, the simple local search
often led to a degradation of performance as monocolor regions were divided up into small regions
instead of being fully assigned to one region. By moving to the hierarchical search that merged
regions together, suddenly the local search resulted in dramatic improvements. This finding has
implications beyond image segmentation, as simple local searches are used in many hybrid GAs
and it is possible that they could benefit from a hierarchical local search. In particular, problems
involving local search on images or spin glasses could be prime candidates for hierarchical local
search.

There are several other key areas for future work. First, more powerful crossover operators

12



should be examined and tested to see if they can improve the convergence time to a good solution.
Then, different inhibition terms (Opara & Wörgötter, 1998; von Ferber & Wörgötter, 2000) could
be used to emphasize contrast in the resulting segmented images. It is also important to study the
effects of population size on the quality of the obtained image segmentation and the efficiency of
the search.
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