
Linkage Learning using the Maximum Spanning Tree of the Dependency Graph

B. Hoda Helmi, Martin Pelikan and Adel Rahmani

MEDAL Report No. 2012005

April 2012

Abstract

The goal of linkage learning in genetic and evolutionary algorithms is to identify the interactions between variables

of a problem. Knowing the linkage information helps search algorithms to find the optimum solution efficiently

and reliably in hard problems. This paper presents a simple approach for linkage learning based on the graph

theory. A graph is used as the structure to keep the the pairwise dependencies between variables of the problem.

We call this graph ‘the underlying dependency graph of the problem’. Then maximum spanning tree (MST) of

the dependency graph is found. It is shown that MST contains all the necessary linkage if the dependency graph

is built upon enough population. In this approach, pairwise dependencies calculated based on a perturbation

based identification method, are used as the variable dependencies. The proposed approach has the advantage of

being capable of learning the linkage without the need for the costly fit-to-data evaluations for model search. It

is parameter-less and the algorithm description is simple and straight forward. The proposed technique is tested

on several benchmark problems and it is shown to be able to compete with similar approaches. Based on the

experimental results it can successfully find the linkage groups in a polynomial number of fitness evaluations.

Keywords

Linkage learning, graph theory, maximum spanning tree, estimation of distribution algorithms, optimization prob-

lems, decomposable functions, nonlinearity detection.

Missouri Estimation of Distribution Algorithms Laboratory (MEDAL)

Department of Mathematics and Computer Science

University of Missouri–St. Louis

One University Blvd., St. Louis, MO 63121

E-mail: medal@medal-lab.org

WWW: http://medal-lab.org

Linkage Learning using the Maximum Spanning Tree of the

Dependency Graph

B. Hoda Helmi

Missouri Estimation of Distribution Algorithms Laboratory (MEDAL)
Dept. of Math and Computer Science, 321 ESH

University of Missouri at St. Louis
One University Blvd., St. Louis, MO 63121

helmib@umsl.edu

Martin Pelikan

Missouri Estimation of Distribution Algorithms Laboratory (MEDAL)
Dept. of Math and Computer Science, 320 ESH

University of Missouri at St. Louis
One University Blvd., St. Louis, MO 63121

pelikan@cs.umsl.edu

Adel T. Rahmani

SCOMAS LAB
Dept. of Computer Science

Iran University of Science and Technology
Tehran, Iran 13114-16846
rahmani@iust.ac.ir

Abstract

The goal of linkage learning in genetic and evolutionary algorithms is to identify the interac-
tions between variables of a problem. Knowing the linkage information helps search algorithms
to find the optimum solution efficiently and reliably in hard problems. This paper presents a
simple approach for linkage learning based on the graph theory. A graph is used as the struc-
ture to keep the the pairwise dependencies between variables of the problem. We call this graph
‘the underlying dependency graph of the problem. Then maximum spanning tree (MST) of
the dependency graph is found. It is shown that MST contains all the necessary linkage if the
dependency graph is built upon enough population. In this approach, pairwise dependencies
calculated based on a perturbation based identification method, are used as the variable de-
pendencies. The proposed approach has the advantage of being capable of learning the linkage
without the need for the costly fit-to-data evaluations for model search. It is parameter-less
and the algorithm description is simple and straight forward. The proposed technique is tested
on several benchmark problems and it is shown to be able to compete with similar approaches.
Based on the experimental results it can successfully find the linkage groups in a polynomial
number of fitness evaluations.

Keywords: Linkage learning, graph theory, maximum spanning tree, estimation of distribution
algorithms, optimization problems, decomposable functions, nonlinearity detection.

1

1 Introduction

Linkage learning is among the most studied topics in evolutionary computation. In optimization,
linkage corresponds to interactions between variables of the problem. Knowing the linkage informa-
tion, searching for the optimum solution can often be performed efficiently (Thierens & Goldberg,
1993). In black box optimization problems, linkage information is not available available on input
and the linkages must be identified using samples of candidate solutions and their evaluation. The
goal of linkage learning is to find important linkages from such samples. The two priorities in
learning linkage are (1) accuracy of the identified linkages, and (2) efficiency of the learning. Sev-
eral approaches were proposed for learning linkage along with the optimization search (Sastry &
Goldberg, 2000; Pelikan, 2005; Yu, Sastry, Goldberg, Lima, & Pelikan, 2009; Larranaga & Lozano,
2002). There are also approaches that do the linkage learning separately (Yu & Goldberg, 2004;
Nikanjam, Sharifi, Helmi, & Rahmani, 2010), this class of approaches are called offline throughout
this paper. The output of this class of linkage learning approaches can then be used by evolutionary
algorithms like the simple genetic algorithm with building-block-wise crossover (Sastry & Goldberg,
2000) or local search based on advanced, linkage-based neighbourhood operators (Posik, 2011) to
find the optimum solution of the problem. As it is said above, the only source of data in black-box
optimization is an evaluated population of potential solutions, so the population size is an impor-
tant factor for learning of the linkage. Algorithms need certain minimal population size to have
enough data to be able to find all the linkage groups correctly. It is important to find the minimal
needed population size, because first evaluation of the population may be a time consuming task
especially in real world problems, and second too large population may cause falsely discovering of
the linkages (Santana, Larranaga, & Lozano, 2007). So unnecessary evaluations are avoided in good
linkage learning solutions and size of the population and number of function evaluations are met-
rics for evaluating the linkage learning algorithms. In this paper, a linkage identification approach
is introduced that is built upon the simple concept of maximum spanning tree. The proposed
algorithm uses perturbation based pairwise dependencies to construct the underlying dependency
graph of the problem. Maximum spanning tree of the graph is then found.
The proposed model has the advantage of being capable of learning the linkage without the need for
the costly fit-to-data evaluations in every generation. It only use a population for computing the
pairwise dependency by computing the fitness value of every order two schemata. It is parameter-
less and simple in terms of the algorithm description and algorithm complexity.
In next section, some related works are reviewed. In section 3, the advantages and disadvantages of
offline linkage learning is briefly discussed. Section 4 is all about the proposed linkage identification
algorithm and the background information is needed to explain it. Section 5 presents the complex-
ity analysis of the algorithm. In section 6, reference algorithms are introduced. Section 7 presents
the experimental results of algorithm. To show the performance and efficiency of the proposed
approach, it is tested on some benchmark problems and its effectiveness is discussed. Finally in
section 8, some conclusion remarks, highlights of the algorithm and future directions are presented.

2 Related Works

Several linkage learning techniques were presented in the literature and these techniques were clas-
sified from different perspectives (Chen, Yu, Sastry, & Goldberg, 2007).
Linkage adaptation techniques are the first attempts for linkage learning. They are in fact evolu-
tionary processes which employ special operators or representations for avoiding the disturbance
of building blocks by adapting the linkage along with the evolutionary process. the linkage evolves

2

along with the individual solutions. Several such approaches are reported in literature (ping Chen
& Goldberg, 2006; Chen, Yu, Sastry, & Goldberg, 2007).
Estimation of distribution algorithms (EDAs) (Larranaga & Lozano, 2002) replace conventional
variation operators such as crossover and mutation by building and sampling a probabilistic model
of selected solutions. Many EDAs are able to learn linkage between problem variables, often en-
coded by graphical models such as Bayesian networks. In most EDAs, linkages are identified in
each generation. The first EDAs, such as univariate marginal distribution algorithm (UMDA)
(Muhlenbein, 1997) did not use dependencies between variables. The second generation of EDAs
used bivariate dependencies and the last generation could discover and use multivariate dependen-
cies. The learning factorized distribution algorithm (LFDA) (Mahnig & Muhlenbein, 1999), the
extended compact genetic algorithm (ECGA) (Sastry & Goldberg, 2000) and the Bayesian opti-
mization algorithm (BOA) (Pelikan, 2005) are some of the advanced EDA approaches capable of
linkage learning.
Perturbation-based methods, detect linkage groups by perturbing individuals in the population and
inspecting the fitness changes caused by the perturbations. The non-
monotonicity/non-linearity which can be detected by perturbation is considered as linkage. Gene
expression messy genetic algorithm (gemGA) (Kargupta, 1996), which uses transcription operator
for identifying linkage groups can be classified in this category. Linkage identification by nonlinear-
ity check (LINC) and Linkage identification by non-monotonicity detection (LIMD) (Munetomo &
Goldberg, 1999) are other perturbation-based approaches which detect linkage by examining non-
linearity and non-monotonicity of fitness change by perturbations in pairs of variables. The idea of
LINC and LIMD was also generalized for functions with overlapping linkage groups by introducing
the linkage identification with epistasis measures (LIEM) (Munetomo, 2001). The perturbation
analysis in LIEM can be done for any k-tuple bits. Perturbation-based linkage learning are usually
used as part of the genetic algorithms.
The offline utility of the dependency structure matrix genetic algorithm (Yu & Goldberg, 2004)
uses a perturbation based linkage identification like LINC. The dependency structure matrix is
used for calculating the pairwise dependencies and a DSM clustering approach is introduced for
turning pairwise dependencies into linkage groups. The linkage identification phase is completely
separated from the genetic search. The DSM clustering method in the offline dependency structure
matrix genetic algorithm is based on the evolutionary strategy. DSMC (Nikanjam, Sharifi, Helmi,
& Rahmani, 2010) is another offline linkage learning technique that has introduced a density based
iterative clustering algorithm for DSM clustering. In this approach, DSM is constructed using a
perturbation based metric like LINC. Both of the off-line linkage learning approaches mentioned
above use a binary value as the variable interactions, they use a binary matrix as the DSM and
two variables are considered either completely dependent or completely independent.
The proposed linkage learning technique can be also classified in the category of perturbation based
methods. Our approach is performed offline, similar to offline utility of the dependency structure
matrix genetic algorithm and DSMC. These two approaches are used as reference algorithms and
are explained more in section 6.

3 Why Offline Linkage Learning

Pros and cons of offline linkage learning are discussed in detail in ref. (Yu & Goldberg, 2004); here
we discuss the most important ones briefly.
One of the most important benefits of offline linkage learning is the reduction of computational
resources. The time savings are mainly due to the fact that the offline linkage learning is per-

3

formed only once but online linkage learning is performed in every generation. In ref. (Yu &
Goldberg, 2004) it is also argued the offline linkage learning saves some number of function eval-
uations. O(l log l) is reported as a loose lower bound for number of function evaluations for a GA
with off-line linkage learning. This lower bound is estimated by a time to convergence model which
assumes an infinite population size and perfect mixing.
Offline linkage learning also enables us to use the linkage information obtained for a problem, when
solving similar problems as well.
There are also few disadvantages for using offline linkage learning. The most important one is
that the offline linkage learning techniques should be accurate because the wrong identified linkage
groups make the convergence difficult for the search algorithms. On the other hand, with online
linkage learning if a linkage group is misidentified in one generation, it may be identified correctly
in the next generation. Another disadvantage of offline linkage learning is that it can only be used
for problems for which one division of variables into linkage groups suffices; for many problems, the
model can change over time to cover different sets of dependencies at different times. This is useful
especially for problems that are not additively separable of bounded order.

4 Proposed Approach

The proposed algorithm consists of three steps: (1) Calculate pairwise dependencies and construct
the pairwise dependency graph of the problem, (2) find the maximum spanning tree of the graph
and (3) cut off the low-weight edges (false linkages). The linkage information in the algorithm is
in the form of groups of independent variables that should be treated together. The pseudo-code
is depicted as Alg 2.
The approach as will be explained here is capable of learning disjoint linkage groups even for
problems with linkage groups of varying size. Extensions of the proposed approach to problems
with linkage groups that interact with each other (subproblems overlap) is an important topic for
future work. The remainder of this section describes details of the proposed approach.

Step 1: Constructing The Dependency Graph

The dependency graph is a weighted, undirected graph where each vertex corresponds to one deci-
sion variable and each edge of the graph has a weight eij representing the strength of dependency
between vertex i and vertex j. Edge weights {eij} are real numbers. The larger the eij is, the
stronger the dependency is between vertex i and vertex j.
To construct the dependency graph, a pairwise dependency metric is calculated for each pair of
variables. Mutual information, simultaneity metric (Sangkavichitr & Chongstitvatana, 2009) and
some other metrics can be used. Since the linkage learning is going to take place offline, in order
to maximize information extracted from each evaluated solution, we decided to use perturbation
methods as the basis for creating the underlying dependency graph. The main advantage of pertur-
bation methods is that they are capable of measuring strength of interactions even with a uniformly
distributed population. However, it is straightforward to adopt other linkage identification mecha-
nisms instead. Because our algorithm uses pairwise dependencies, among the perturbation methods,
a linkage identification metric like linkage identification by non-linearity check (LINC) and linkage
identification by non-monotonicity detection (LIMD) would be suitable. We use a metric similar to
LINC which is used in ref. (Yu & Goldberg, 2004) and ref. (Nikanjam, Sharifi, Helmi, & Rahmani,
2010).

4

Figure 1: The underlying graph of the maxTrap3-4 problem

Figure 1 shows an example of an underlying dependency graph of a problem with 12 variables (a
concatenated function with four 3-bit traps (see Sec.7)). The thickness of edges shows their weight
magnitude. Lines are the correct linkages and dashed lined are false linkages.
If the dependency graph is correctly constructed, the edges between dependent variables would be
stronger than the edges between non-dependant variables.

Pairwise dependencies:

The pairwise dependency metric defined in Ref. (Yu & Goldberg, 2004) is used for constructing
the dependency graph. Define fai=x,aj=y as the average fitness of all the schemata where the
ith variable is x, the jth variable is y, and the rest are ∗ (don’t care symbol). For example, for
i = 1 and j = 4 in a 5-bit problem, fai=0,aj=1 = f(0 ∗ ∗1∗). Values of fai=0,aj=1 − fai=0,aj=0 and
fai=1,aj=1 − fai=1,aj=0 should be the same if the ith variable and the jth variable are independent.
Therefore, the interaction between the ith variable and the the jth variable is defined as |fai=0,aj=1−
fai=0,aj=0 − fai=1,aj=1 + fai=1,aj=0|.
However, the fitness value of schemata cannot be computed unless possible combination space is
visited completely. In practice, the actual fitness of the schemata is computationally too expensive
to be calculated so the observed fitness of the individuals seen in a large enough population is
calculated instead. The interaction between the ith variable and the the jth variable calculated
from the seen population by this method is used as the weight of edges between variable i and j in
the dependency graph.

Step 2: Finding the Maximum Spanning Tree of the Underlying Graph of the

Problem

Once the graph is constructed, a maximum spanning tree of the graph is constructed by one of the
classic algorithms like Prime’s or Kruskal’s one.

Maximum spanning tree of the dependency graph

In graph theory, a spanning tree T of a connected, undirected graph G is a tree composed of all the
vertices and some (or perhaps all) of the edges of G. That is, every vertex lies in the tree, but no
cycles (or loops) are formed. A maximum spanning tree (MST) or maximum weight spanning tree
is the spanning tree with weight greater than or equal to the weight of every other spanning tree.
If pairwise dependencies are calculated on enough population, the MST contains the strongest path

5

Figure 2: The maximum spanning tree of the maxTrap3-4 problem

between variables in a linkage group. In a problem with m linkage groups of size k, The path has
exactly k − 1 strongest edges between variables in a linkage group of size k. MST also contains
m− 1 weak edges (false linkages) between m linkage groups. These linkages are added to the MST
to keep it connected.
In a dependency graph, weights are non-linearities between variables. Ideally, a non-linearity be-
tween two independent variables should be zero. In such situations, the underlying graph of the
problem would contain edges of weight 0 and the maximum spanning tree would consist of linkage
groups that are connected with edges of 0 weight. Even with incomplete information from a sample
of limited size, N, Non-linearity between variables that belong to different linkage groups is still
expected to be greater than non-linearity between independent variables. A maximum spanning
tree contains the minimum required maximum weight edges (linkages) between vertices (variables)
of a linkage group and an edge (false linkage) between linkage groups as well. In Fig 2 a maximum
spanning tree of the graph shown in Fig1 is demonstrated. In the proposed method Prime’s algo-
rithm is used to find the MST. The Prime algorithms is as follow:
Finding the MST is done in O(n2).

Algorithm 1 Prime algorithm to find the MST

Input: A non-empty connected weighted graph with vertices V and edges E.
Output: MST

Initialize: Vnew = x, where x is an arbitrary node from V , Enew = ∅
repeat

Choose an edge (u, v) with maximal weight such that u is in Vnew and v is not.
Add v to Vnew, and (u, v) to Enew

until Vnew = V :

Step 3: Cutting Off the False Linkages

The final task consists of cutting off the edges between the linkage groups. If sufficient population
is used for constructing the graph, a simple 2-means clustering algorithm (a special case of the k -
means algorithm, where k = 2) would be able to find the set of false linkages, because with enough
population size, the m ∗ (k − 1) correct linkages in MST are the strongest ones in the dependency
graph and the m− 1 false linkages in MST are supposed to be weaker than all the correct linkages
(m ∗ k ∗ (k − 1)/2) in the dependency graph, so there would be a sensible gap between weights of
the m ∗ (k − 1) correct linkages and m− 1 false linkages in the MST.
A more intelligent threshold that considers the intra linkage group edges of the graph (that are not

6

in the MST) may be able to lower the population, but it will definitely complicate the process of
pruning the false edges. In this experiment, the 2-means algorithm is simply used to find the false
linkages.
Cutting the false linkages will create a maximum spanning forest, consisting of several trees. Each
tree represents a linkage group.

Algorithm 2 Algorithm of the proposed approach

Output: Linkage groups
1: Create random population.
2: Evaluate the population.

{Computing the pairwise dependencies eij ∈ E between variables i, j ∈ V and constructing the
dependency graph Gd(V,E)}

3: for each variable i and variable j, do
4: for each individual a in the population, do
5: Update fai=0,aj=0||fai=0,aj=1||fai=1,aj=0||fai=1,aj=1

6: end for

7: eij =
|fai=0,aj=1 − fai=0,aj=0 − fai=1,aj=1 + fai=1,aj=0|

8: end for

9: Find the maximum spanning tree of the graph.
10: Find threshold (T) by 2-means clustering on the edges of the MST.
11: Cut the edges weighted less than T .

5 Compexity Analysis

In this section, the number of function evaluations and the complexity of the proposed linkage
learning algorithm is discussed. As discussed above, the algorithm is comprised of three main steps
of (1) constructing the underlying graph, (2) finding the MST of the graph and (3) cutting off the
false linkages.
Only in the first step of the algorithm, for identifying the non-linearity, evaluation is performed.
Each individual in the population is evaluated exactly once. Therefore if population size is N ,
number of fitness evaluations would be N .
Pair-wise dependencies (f values) are computed by a pass through all the strings in the population
and updating four f values for each pair of variables. Computing the f values is done O(n2) times
for each string. Therefore this computation is done in three nested loops and take O(n2 × N)
iterations, where n is problem size and N is population size.
Finding the MST is done in O(n2). For cutting the false linkages a simple 2-means clustering
algorithm is used. The main loop of the 2-means clustering algorithm is set to a constant number.
Maximum number of items for clustering is n − 1, so the computation complexity of cutting the
false linkages is O(n)

6 Reference Algorithms

Two approches are used as a reference. Both are offline linkage learning approaches and are per-
formed once before the search for the optimum solution. Both use a nonlinearity detection method
similar to LINC as the dependency metric.

7

Offline utility of DSMGA (Yu & Goldberg, 2004) uses nonlinearity detection to construct the de-
pendency structure matrix and then cluster the DSM by an evolutionary strategy with a fit-to-data
objective function.
The second approach DSMC (Nikanjam, Sharifi, Helmi, & Rahmani, 2010) is also a DSM clustering
algorithm. In ref. (Nikanjam, Sharifi, Helmi, & Rahmani, 2010) a density based iterative clustering
algorithm is proposed to find linkage groups. This approach does not need to check the model fit
with regard to data, but it needs to set some parameters and thresholds to do the clustering.
Both of the offline linkage learning approaches mentioned above use binary values as the variable
interactions, they use a binary matrix as the DSM and two variables are considered either com-
pletely dependent or completely independent. Deciding the threshold to convert the DSM to a
binary DSM, which is done in both approaches, is not an easy task.

7 Experimental Results

In this section, the experimental results are presented. First the experiments and test functions
are explained and then the results are shown and analysed.

Test functions

Trap function is a benchmark problem in the linkage learning community. It is a function with
hard-to-detect linkage.

f(x) =

{

k if u = k
k − 1− u(x) else

(1)

where u(x) returns number of 1s in string x. It has one global optimum in individual of all 1s and
one local optimum in individuals of all 0s. The function is difficult because the local optimum has
larger basin of attraction.
A Concatenated Trap function is a sum of Trap subfunctions. In this paper, concatenated Trap
functions are used as the test function. A concatenated Trap function with m subfunctions, has
one global optimum and 2m − 1 local optima.

Setup of experiments

The results are shown for the concatenated Trap functions with linkage groups of sizes 4 (for
problem sizes 20 to 160), 5 (for problem sizes 25 to 200) and 6 (for problem sizes 24 to 240).
A concatenated Trap function with different-sized Trap subfunctions (mixedTrap) is also used
as test function. The concatenated mixed-Trap function used in the experiments is additively
composed of 2-bit, 3-bit, 4-bit, 5-bit, 6-bit trap functions. The concatenated mixed-Trap functions
for different problem sizes (20, 40, 60, 80 and 100) are used.

Population size estimation

Population size is an important factor for learning of the linkage. Algorithms need certain minimal
population size to have enough data to be able to find all the linkage groups correctly. It is important
to find the minimal needed population size because first, evaluation of the population may be a

8

 1000

 25000

 49000

 73000

 97000

 121000

 145000

 20 40 60 80 100 120 140 160 180 200 220 240

P
o

p
u

la
tio

n
 S

iz
e

Problem Size

Trap6
Trap5
Trap4

Figure 3: Population size needed for the proposed algorithm to successfully learn all the linkage
groups for concatenated Trap function

time consuming task especially in real world problems, and second, too large population may cause
falsely discovering of the linkages (Santana, Larranaga, & Lozano, 2007). Two population sizing
schemata are introduced in (Yu & Goldberg, 2004) for off-line linkage learning approaches. In this
study we didn’t use a population sizing estimation and it is left for future works.
To report the enough population size for our approach, bisection method is used. Population size
is determined by bisection and the success metric has been 50 successful independent runs of the
algorithm in which all the linkage groups are identified correctly. The error rate for linkage learning
is zero and all the linkage groups are learned correctly in 50 independent runs with the population
size determined by bisection.
In figure 3, population size (number of fitness evaluations) needed for the proposed algorithm
to learn linkage groups for Trap4, Trap5 and Trap6 is plotted. In figure 4, population size for
MixedTrap problem is shown.

Scalability

We have fitted our results to N ≈ anb (polynomial scaling) and N ≈ anb log n reported for EDAs.
Based on the coefficient of determination (R2) both models are acceptable. This deduction is based
only on the available data.
In figure 5, number of fitness evaluations for Trap4, Trap5 and Trap6 are plotted together with the
fit model N ≈ anb. b is observed to be in the range (1,1.7) for the proposed algorithm.

Comparison with reference algorithms

The reference algorithms are described in section 6. For offline utility of DSMGA, results on a
concatenated Trap function with 10 subfunctions of order 5 is reported, 11712 function evaluations
was needed to correctly identifies 99.8 of linkage groups. For the same problem 7625 function eval-
uations are needed for the proposed algorithm to find all the linkage groups.
The results of both DSMC and the proposed algorithm are depicted in figure 6. Comparing the
results visually, the DSMC needs smaller number of fitness evaluations, but it comes at the cost

9

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 20 30 40 50 60 70 80 90 100

P
o

p
u

la
tio

n
 S

iz
e

Problem Size

MixedTrap

Figure 4: Population size needed for the proposed algorithm to successfully learn all the linkage
groups for concatenated MixedTrap function

of setting and defining several metrics and parameters for iteratively refining the initial clusters of
DSM and find the linkage groups.
As said before both DSMC and the proposed approach use the same metric as the pairwise depen-
dencies. Therefore, their difference is in the way they find the linkage groups. The computational
complexity of the clustering algorithm of DSMC is O(n3) (Nikanjam, Sharifi, Helmi, & Rahmani,
2010), while the computational complexity of the proposed algorithm for finding the linkage groups
is O(n2) which is the complexity of finding the maximum spanning tree.

8 Summary and Conclusion

This paper introduced a simple offline linkage learning approach. The algorithm consists of three
main steps. First, a dependency graph is created using a pairwise metric. Second, a maximum
spanning tree is built for the dependency graph. Third, edges corresponding to weakest depen-
dencies in the maximum spanning tree are eliminated and the connected components are used as
linkage groups. The proposed approach uses a perturbation based linkage identification method to
find the pairwise dependencies between variables, although other pairwise metrics could be adopted
in a straightforward manner. The proposed method does not need to do the costly fit-to-data check,
it is one of the features of the algorithm. To demonstrate the performance of the proposed ap-
proach, the results on different sized Trap functions and mixed-Trap functions are reported. It is
shown that the proposed approach can find all the linkage information correctly (at least for the
tested problems) with a polynomial number of fitness evaluations. The results are compared to
the results of two reference approaches and it is shown that performance of the three methods is
comparable in terms of the number of function evaluations. The main advantage of the proposed
approach compared to prior work in offline linkage learning and DSMC is that the algorithm con-
tains no parameters that must be tuned. Linkage groups discovered by the proposed algorithm
can be used by any search algorithm to find the optimum. The search algorithm can be chosen
knowing the number of linkage groups and order of linkage groups, it can be a simple local search or
a building-block wise crossover genetic algorithm. The algorithm can successfully find the linkage
groups of the additively separable functions with different sized subfunctions. As the future work,

10

 50000

 100000

 50 100 150 200 250

P
o

p
u

la
tio

n
 S

iz
e

Problem Size

Trap4
Trap5
Trap6
a*n^b

Figure 5: Number if fitness evaluations and the fit N ≈ anb to the results for concatenated Trap
function

Performance of the proposed algorithm should be tested on other problems as well, like functions
with overlapping linkage groups and exponentially scale problems. A population size estimation is
needed for automatic determination of a good population size, two approaches are introduced in
ref. (Yu & Goldberg, 2004) which should be tested for the proposed algorithm. The performance
of the proposed algorithm as a model building approach along with the optimization search should
be tested and discussed in future works.

Acknowledgments

References

Chen, Y.-P., Yu, T.-L., Sastry, K., & Goldberg, D. E. (2007). A survey of linkage learning
techniques in genetic and evolutionary algorithms (Technical Report). Illinois Genetic Algo-
rithms Laboratory, Urbana, IL: IlliGAL Report No. 2007014, University of Illinois at Urbana-
Champaign.

Kargupta, H. (1996). The performance of the gene expression messy genetic algorithm on real
test functions. In 1996 IEEE International Conference on Evolutionary Computation (pp.
631–636). Morgan Kaufmann Publishers, Inc.

Larranaga, P., & Lozano, J. (2002). Estimation of distribution algorithms: A new tool for evolu-
tionary computation. Kluwer Academic Pub.

Mahnig, T., & Muhlenbein, H. (1999). FDA - a scalable evolutionary algorithm for the optimiza-
tion of additively decomposed functions. Evolutionary Computation,, 7 (4), 353–376.

Muhlenbein, H. (1997). The equation for response to selection and its use for prediction. Evolu-
tionary Computation, 5 (3), 303–346.

Munetomo, M. (2001). Linkage identification based on epistasis measures to realize efficient
genetic algorithms. In World Congress on Computational Intelligence (pp. 1332–1337). IEEE

11

 1200

 12000

 120000

 16 32 64 128

P
o

p
u

la
tio

n
 S

iz
e

Problem Size

Trap6-proposed approach
Trap6-DSMC

Trap5- proposed approach
Trap5-DSMC

Trap4- proposed approach
Trap4-DSMC

Figure 6: Number of fitness evaluations needed to solve concatenated Trap problem for both DSMC
and the proposed approach

Computer Society.

Munetomo, M., & Goldberg, D. E. (1999). Identifying linkage groups by nonlinear-
ity/nonmonotonicity detection. In Genetic and Evolutionary Computation Conference
(GECCO-99) (pp. 433–440). Morgan Kaufmann Publishers, Inc.

Nikanjam, A., Sharifi, H., Helmi, B. H., & Rahmani, A. T. (2010). A new dsm clustering algo-
rithm for linkage groups identification. In Genetic and Evolutionary Computation Conference
(GECCO-10) (pp. 367–368). ACM.

Pelikan, M. (2005). Hierarchical bayesian optimization algorithm. Springer-Verlag Berlin Heidel-
berg.

ping Chen, Y., & Goldberg, D. E. (2006, March). Convergence time for the linkage learning
genetic algorithm. Evolutionary Computation, 13 (3), 279–302.

Posik, S. V. P. (2011). Parameter-less local optimizer with linkage identification for determin-
istic order-k decomposable problems. In Genetic and Evolutionary Computation Conference
(GECCO-11) (pp. 577–585). ACM.

Sangkavichitr, C., & Chongstitvatana, P. (2009). Direct and explicit building blocks identification
and composition algorithm. In CEC’09: Proceedings of the Eleventh conference on Congress
on Evolutionary Computation (pp. 2460–2465). IEEE Press.

Santana, R., Larranaga, P., & Lozano, J. (2007). Challenges and open problems in discrete edas.
University of Basque Country, Spain: Technical Report EHU-KZAA-IK-1/07 Department of
Computer Science and Artificial Intelligence.

Sastry, K., & Goldberg, D. E. (2000). On extended compact genetic algorithm. Illinois Genetic
Algorithms Laboratory, Urbana, IL: IlliGAL Report No. 2000026, University of Illinois at
Urbana-Champaign.

Thierens, D., & Goldberg, D. E. (1993). Mixing in genetic algorithms. Morgan Kaufmann Pub-
lishers, Inc.

Yu, T.-L., & Goldberg, D. E. (2004). Dependency structure matrix analysis: Offline utility of the

12

dependency structure matrix genetic algorithms. In Genetic and Evolutionary Computation
Conference (GECCO-2004), Part II, LNCS 3103 (pp. 355–366). Springer.

Yu, T.-L., Sastry, K., Goldberg, D. E., Lima, C. F., & Pelikan, M. (2009). Dependency structure
matrix, genetic algorithms, and effective recombination. Evolutionary Computation, 17 (4),
595–626.

13

