
A Simple Implementation of

the Bayesian Optimization Algorithm �BOA�
in C�� �version ����

Martin Pelikan

IlliGAL Report No� �����
March ����

Illinois Genetic Algorithms Laboratory
University of Illinois at Urbana�Champaign

��� Transportation Building
��� S� Mathews Avenue Urbana	 IL
����

O�ce ����� ��������
Fax ����� ��������

A Simple Implementation of

the Bayesian Optimization Algorithm �BOA� in C��

�version ����

Martin Pelikan
Illinois Genetic Algorithms Laboratory

��� S� Mathews Avenue� Urbana� IL �����
University of Illinois at Urbana	Champaign
Phone
FAX� ���� ���	���� ���� ��	����

pelikan�illigal�ge�uiuc�edu

Abstract

The paper explains how to download� compile� and use the simple implementation of the
Bayesian optimization algorithm �BOA� �Pelikan� Goldberg� � Cant�u�Paz� �		
� Pelikan� Gold�
berg� � Cant�u�Paz� �			�� version ���� written in C� It provides the instructions for creating
input �les for the BOA to solve various problems with various parameter settings and for adding
new test functions into the existing code� Outputs of an example experiment are discussed�

� Introduction

The purpose of this paper is to give basic instructions for downloading	 compiling	 and using the
version ��� of the implementation of the Bayesian optimization algorithm written in C�� that is
publicly available at the IlliGAL anonymous ftp�site� The installation instructions are designed
for UNIX operating systems� However	 we suppose no major modi�cations are necessary and the
source codes should be compiled under most operating systems with a number of di�erent compilers
without major problems�

We have tried to keep the implementation as simple as possible and yet su�ciently powerful
to demonstrate the basic principle of the algorithm and either to reproduce the results of recent
experiments or to produce new ones� Therefore	 the code does not include many features discussed
in the papers discussing the algorithm as the incorporation of prior information or other than a
simple greedy search for constructing the network modeling the data� Although some low�level
constructs are written in object�oriented C��	 on a higher level we have avoided the use of object�
oriented features so that the code is tractable even for the users grown on structural or functional
languages�

The paper starts by providing the instructions for downloading and extracting the package
including the source code and a few example input �les� Section � explains how to compile the
extracted source code� Section � discusses the features of the implementation or what has actually
been implemented� In section
	 the format of input �les and the description of parameters that
it can specify are presented� Section � discusses the format of output �les for a simple example
experiment� A short description of the source �les	 the list of implemented test functions	 and the
instructions for plugging in new test functions can be found in Section ��

�

� How to Download and Extract the Source Code

The package with the source code and few example input �les is available at the IlliGAL anonymous
ftp site in ftp���ftp�illigal�ge�uiuc�edu�pub�src�sBOA�C���sBOA�tar�Z�

After downloading the package �sBOA�tar�Z� into your directory	 the �les can be extracted by
typing the following

uncompress sBOA�tar�Z

tar xvf sBOA�tar

After extracting the �les correctly	 your directory should contain the following �les containing the
source code and a directory with the example input �les with their outputs

K��cc checkCycles�cc graph�h population�h stack�cc

K��h checkCycles�h header�cc random�cc stack�h

Makefile computeCounts�cc header�h random�h startUp�cc

args�cc computeCounts�h help�cc recomputeGains�cc startUp�h

args�h examples help�h recomputeGains�h statistics�cc

bayesian�cc fitness�cc main�cc replace�cc statistics�h

bayesian�h fitness�h memalloc�h replace�h utils�cc

binary�h getFileArgs�cc mymath�cc sBOA�tar utils�h

boa�cc getFileArgs�h mymath�h select�cc

boa�h graph�cc population�cc select�h

In the directory examples	 the �les starting with input are example input �les and the �les
starting with output are the outputs to these �les� The name of these �les says what �tness
function these �les are intended to optimize and what is the size of this function� Parameters that
can be speci�ed in the input �les as well as the format of output �les are explained in the remainder
of this paper�

� How to Compile the Source Code

The compilation is very simple� In a �le Makefile that can be found in the directory with the
uncompressed source code	 the following two changes should be performed

Line �	

In the statement CC � CC	 the CC on the right�hand side should be changed to the name of
a preferred C�� compiler on your machine� With a gcc	 for instance	 the line should be
changed to CC � gcc�

Line
�

In the statement OPTIMIZE � �O�	 the required optimization level should be set �for GNU
gcc this is �O		 for SGI CC it is �O��� For no code optimization	 use only OPTIMIZE � � For
instance	 for a maximal optimization with gcc	 i�e� �O		 use OPTIMIZE � �O	� All modules
are compiled at once since some compilers �as SGI CC� use intermodule optimization that
does not allow them to compile each source �le separately and link them together afterwards�

�

After making the above modi�cations to the Makefile	 you can compile the simple BOA by
typing the following line

make all

We have tested the code for various operating systems and compilers� The results are summa�
rized in Table �� For some operating systems and compilers	 problems with the code optimization
might be encountered �see Table ��� Since the optimized code works much faster	 we encourage you
to try both alternatives �with and without optimization� and compare the �rst few generations of
the runs �e�g�	 average �tness values� for both executables with the same random seed and input
parameters� We have not identi�ed the reason why our implementation gives di�erent results with
optimized and non�optimized code on several system�compiler combinations� However	 giving dif�
ferent results does not necessarily imply that the optimized code is incorrect� it only means that
the optimized code acts slightly di�ererently� Neverethless	 the overall results are approximately
the same�

Table � Compilation of the package on various systems and with several di�erent compilers

Operating System Compiler Problems Encountered

IBM AIX ��� gcc ����� Optimized code produces di�erent results�

IBM AIX ��� xlC ��� none

IBM AIX ��� gcc ����� Optimized code produces di�erent results�

Linux ������ gcc ����� Optimized code produces di�erent results�

Linux ������� egcs ������� Optimized code produces di�erent results�

SGI Irix
�� CC ��� none

Sun OS ����� gcc ����� none

Sun OS ��
 gcc ����� none

ULTRIX ��� gcc ����� none

After correctly compiling the source code there should be an executable �le boa in your directory�

� Command Line Parameters

Without any command line parameters	 the boa runs with all parameters set to their default values�
The boa can be called with either of the following parameters �for examples see Table ��

filename�

Runs the BOA with input parameters speci�ed in the �le ��lename��

�h

Prints the description of command line parameters�

�paramDescription

Prints the description	 the type	 and the default value of all input �le parameters�

�

Table � Examples on command line parameters

Command line Description

boa runs the boa with all input parameters set to their default values

boa myInputFile runs the boa with input parameters speci�ed in the �le myInputFile

boa �paramDescription prints the description of all input �le parameters

boa �h prints the help on the command line parameters

� What Has Been Actually Implemented�

The following list brie�y summarizes what can be found in the version ��� of the BOA implemen�
tation

Representation of Solutions

Solutions are represented by binary strings of �xed length�

Test Functions

Few decomposable test functions with and without overlapped building blocks have been
implemented� The user can add his own test functions easily� Each test �tness function can
�but need not� include the initialization and done methods� This feature can be useful for
more sophisticated functions that need to read input parameters or allocate some memory
before their �rst evaluation and perform certain actions in order to clean the used memory
or the like after their last evaluation in the run��

Problem Size

The problem size can be set by the user� Very big problem sizes are allowed �up to ���
���
The bigger the problem	 the bigger the population	 and the longer the run takes�

Population Size

The population size can be speci�ed by the user� Very big populations can be used �up to
�� ���� ����
���� However	 the bigger the population size	 the slower it takes to process one
generation and the more memory the algorithm uses	 and therefore very big populations are
not very useful� We have used populations up to ��� ����

Selection method

Truncation selection �also called block selection� has been implemented� Truncation selection
selects the best portion of the population� The user can control the selection pressure by
choosing the number of parents to select �in percent of population��

Replacement method
Replacement of the worst has been implemented� With replacement of the worst	 the worst
solutions in the original population are replaced by o�spring� The user can specify the number
of o�spring �in percent of population��

Scoring Metric

The K� metric derived from the Bayesian Dirichlet metric has been implemented� The metric
is used as a measure in order to construct the network that is a good model for the set
of selected promising solutions� It gives preference to networks that model this set more

�

accurately� For the sake of keeping the implementation simple	 no prior information in form
of the prior network or the set of high�quality solutions can incorporated into the metric in
our implementation�

Prior Information

No prior information but the maximal number of incoming edges into each node can be
used� This number corresponds to the maximal order of interactions to be considered in the
distribution estimate�

Network Construction Method

A greedy algorithm with only edge addition allowed has been implemented� The algorithm
gradually adds the edges which increase the scoring metric the most until no edges increase
the metric or no more edges can be added without breaking the constraint on a maximal
number of incoming edges�

Output Statistics

There are few di�erent outputs from the algorithm� The evolution of the best	 average	 and
worst �tness values	 the best solution in a current generation	 the bias of the population	 and
the model used to generate o�spring during the run can be extracted� All outputs can be
related to the current number of generation or a number of �tness evaluations performed so
far�

Termination Criteria

The run can be terminated after a maximal number of generations	 maximal number of �tness
evaluations	 or a maximal proportion of optima in a population are reached� The run can
also be stopped when the population has almost converged and the bits on all positions
are almost homogeneous or when the optimum has been found� Any of the criteria can be
ignored and any combination of various criteria can be used� If a termination criterion that
uses a proposition that decides whether the solutions is optimal or not	 if this proposition is
not de�ned �when the algorithm does not know what is the optimum and what is not�	 the
criterion is ignored�

� Input �les

Input �les can contain the statements of the following form

�identifier� � �value�

where
identifier� is an identi�er of a particular parameter and
value� is its new value� Empty
lines and extra spaces that are not within the identi�er or its value are ignored� The order of
statements in the input �le is not important� Each parameter can be de�ned at most once� If the
value of a parameter is not speci�ed in the input �le	 its default value is substituted� In the case of
multiple de�nition of any parameter	 the program ends up with an error message informing what
parameter was multiply de�ned� If the identi�er does not exist	 the program ends up with an error
message� The interpreter of input �le is case sensitive�

�

The following list describes the values of parameters that can be speci�ed in the input �le	 their
types	 and their default values� You can get a similar list by running boa �paramDescription�

populationSize

Description� The size of a population�

Type� long

Default� ���

parentsPercentage

Description� The number of parents to select �in percent of population��

Type� float

Default� ��

offspringPercentage

Description� The number of o�spring to generate �in percent of population��

Type� float

Default� ��

fitnessFunction

Description� The number of a �tness function to use� �See Section ��� for the list of test
functions included in the implementation�

Type� int

Default� �deceptive of order � without overlapping�

problemSize

Description� The size of a problem �string length��

Type� int

Default� ��

maxNumberOfGenerations

Description� Maximal number of generations to perform before terminating the run� ��
stands for unlimited�

Type� long

Default� ��

maxFitnessCalls

Description� Maximal number of �tness calls before terminating the run� �� stands for
unlimited�

Type� long

Default� �� �unlimited�

epsilon

Description� A threshold for univariate frequencies for terminating the algorithm due to
the so�called bit�convergence� If frequencies of all bits are closer than epsilon
to either � or �	 the run is terminated� �� stands for ignoring this criterion�

Type� float

Default� ����

stopWhenFoundOptimum

Description� Terminate the run when the optimum has been found �if the proposition
identifying the optimum for the optimized function is de�ned�� A non�zero
value stands for �Yes�	 zero stands for �No��

Type� char

Default� � �no�

maxOptimal

Description� Terminate the run when the proportion of optimal solutions �in percent of
a population� has reached this value� �� stands for ignoring this criterion�

Type� float

Default� �� �ignore�

maxIncoming

Description� Maximal number of incoming edges into any of the nodes in the considered
networks �denoted by k in the algorithm description�� Corresponds to the
maximal order of interactions that can be covered by the used class of models
�it is equal to the order of interactions that can be covered minus ���

Type� int

Default� �interactions of �� order�

pause

Description� Wait for Enter key after each generation� A non�zero value stands for �Yes�	
zero stands for �No��

Type� char

Default� � �no�

outputFile

Description� The base of output �le names �will adde the extensions to each output �le
name according to the type of the �le��

Type� char�

Default� NULL �no output �le�

guidanceTreshold

Description� A threshold for a population bias displayed each generation� As soon as the
frequency of a bit gets closer than this parameter to either � or �	 the bit is
said to be biased to the corresponding value�

Type� float

Default� ���

randSeed

Description� A random seed�

Type� long

Default� time �current time�

An example of input �le is presented in Figure
� With this input �le the deceptive function of
order � of the size �number of bits� �� will be optimized with the population size of ����� Truncation

�

selection that selects the best half of the solutions will be used� Each generation	 the half of the
original population is replaced by the o�spring� The networks are to have two incoming edges into
each node at maximum� The run will be terminated after either ��� generations are performed or
the frequencies of all bits are closer than ���� to either � or �� Outputs will be written to output
�les with the base output��deceptive��� and additional extensions corresponding to their type�
Random seed is set to ���� Other parameters are set to their default values� The presented input
�le is included in the package along with the output �les�

populationSize � ����

problemSize � 	�

fitnessFunction � �

parentsPercentage �
�

offspringPercentage �
�

maxIncoming � �

maxNumberOfGenerations � ��

epsilon � ����

outputFile � output�	deceptive�	�

randSeed � ��	

Figure � Example input �le �included in the package as input��deceptive�����

	 Outputs

In this section	 we will brie�y describe the outputs of the boa for the input �le input��deceptive���
shown in Figure
 included in the package� We divide the section into two parts� The �rst one
discusses the outputs to the standard output �which is mostly the screen�� The second one discusses
the outputs that can be found in produced output �les �if any��

��� What Can You See on the Screen�

At �rst	 the header with the name of the program	 the author	 the date of its release	 and the name
of input �le is printed on the screen� It is followed by the list of all parameters and their values
�not only those speci�ed in the input �le�� For each parameter	 its description	 identi�er	 type	 and
the current value is displayed� Since this initial output described above is very simple and easy to
understand	 we do not present an example here�

After printing the information about the product and the parameters	 the information about
the generation number	 the number of �tness evaluations performed so far	 the best	 average	 and
the worst �tness values in a current population	 the proportion of optima in a current population �if
the proposition checking for optima is de�ned for the used test function�	 the population bias �the
guidance vector�	 and the best solutions in the current population is displayed� This information
is printed out each generation� An example of the output information written each generation is
shown in Figure ���� The example was produced with the boa with input parameters speci�ed in

�

the input �le input��deceptive���	 included in the package� It shows	 that the number of current
generation is ��	 ���� �tness evaluations were performed so far from the beginning of the run	 the
best �tness in the current population is ��	 the average �tness in the population is ��
���	 and
the worst �tness in the population is ��������� There are �� of global optima in the population�
The bits on positions from � to �� and from �
 to �� are biased to � �the frequencies of � on these
positions is closer than the parameter guidanceTreshold to ��� All other positions are unbiased
�the ��� is displayed on unbiased positions�� The best solution in a population has ��s on all
positions�

Generation � ��

Fitness evaluations � ���

Fitness �max�avg�min� � ���������� ��		��� ���������

Percentage of optima in pop� � ����

Population bias � ������������������������������

Best solution in the pop� � ������������������������������

Figure � Example information produced by the boa each generation to standard output�

After the run is terminated	 the similar information is produced for the last generation� In
addition to this	 the information on the reasons for terminating the run is provided �in case of
meeting multiple criteria for terminating the run	 the �rst identi�ed reason is displayed�� Again	
when the proposition for checking the optima is not available	 the items that use this are excluded�
An example of the �nal information closing the run is shown in Figure ���� The example was
produced with the boa with input parameters speci�ed in the input �le input��deceptive���	
included in the package�

FINAL STATISTICS

Termination reason � Bit convergence �with threshold epsilon�

Generations performed � �

Fitness evaluations � �
��

Fitness �max�avg�min� � ���������� ��������� ����������

Percentage of optima in pop� � ������

Population bias � ������������������������������

Best solution in the pop� � ������������������������������

Figure � Example information produced by the boa at the end of the run�

After performing the whole run	 a string �The End�� should be printed out	 as the last line
sent to the standard output�

��� What Can You Find in the Output Files�

If you specify the parameter outputFile in the input �le	 the boa produces three output �les	 each
starting with the base given by the outputFile parameter with an extension depending on the �le
type�

The following list displays the �le names and the short description of the content corresponding
output �les with respect to the
base� �the base of the �le names given by the outputFile

�

parameter�

base��log

Log��le	 including all standard outputs �except for the message about waiting for the Enter
key to be pressed��

base��model

The models �the description of the used network� used for generating o�spring each genera�
tion�

base��fitness

The best	 average	 and the worst �tness	 with the number of current generation and the
number of �tness evaluations performed in a format that is easily visualized by visualization
tools as gnuplot�

The log��le includes all standard outputs that are explained in the previous section and therefore
no additional explanation is necessary�

In the �le with the networks used to generate the o�spring each generation	 the number of
current generation and the list of nodes and their parents are displayed each generation� Each node
is denoted by the number of variable it corresponds to starting with �� Each line providing the
information about the node and its parents is of the following form

�node� �� �list of its parents�

Parents are divided by commas� If there are no parents	 the right�hand side remains empty� An
example of the output in this �le is shown in Figure ���� The example was produced with the boa
with input parameters speci�ed in the input �le input��deceptive���	 included in the package�
In our example	 in the network used to generate the o�spring in generation � there are two edges
ending in the node �	 the �rst starts in � and the second starts in � �i�e�	 the node � has two
parents	 nodes � and ��� Similarly	 for instance	 there is one edge ending in the node �� This edge
starts in the node �� The node � has no parents at all	 i�e� there are no edges ending in this node�
Remaining information from the example can be interpreted in a similar way�

In the �le with the extension fitness including the best	 worst and average �tness values with
respect to the number of current generation and the number of �tness evaluations performed so
far	 each line includes � numbers� The following list describes the values �in the order from the
leftmost�

�� The number of current generation

�� The number of �tness calls performed so far

�� The best �tness in a current population

�� The average �tness in a current population

�� The worst �tness in a current population

An example of a line produced by the boa with a speci�ed output �le name with additional
extension fitness is shown in Figure ���� The example was produced with the boa with input
parameters speci�ed in the input �le input��deceptive���	 included in the package� The line says
that in generation �	 after performing ���� �tness calls	 the best �tness in the population is ���	 the
average �tness is ����
�	 and the worst �tness is �������� �this is an error caused by �oating�point
operations	 the correct value is �����

��

Generation�

� �� �� �

� �� �� ��

� �� �� ��

	 ��
� ��

� �� 	�

 ��

 �� �� ��

� �� � �

� �� �� �

� ��

�� �� ��� �

�� �� ��

�� �� �
� ��

�	 �� ��� ��

�� �� ��� ��

�
 �� �� ��

� �� ��� ��

�� �� ��� �

�� �� ��� ��

�� �� �� �

�� �� ��� ��

�� �� ��� �

�� �� ��� �	

�	 �� ��� �

�� �� �
� �

�
 �� ��� ��

� �� �
� ��

�� �� �� ��

�� �� ��� �

�� �� ��� ��

Figure � Example model description produced by the boa�

 The Code

In this section	 we shortly describe the function of each of the source �les� Thereafter	 we provide
the instructions for plugging in a new test function into the existing code�

��� Brief Description of the Source Files

The following list brie�y describes what functions are located in each source �le� A similar de�
scription is located at the beginning of the corresponding source �les among with the information
about the author and the date of a last modi�cation� For each function	 a detailed description of
its purpose and its input parameters are presented before its de�nition� The source �les are heavily
commented�

K�cc

Functions for the initialization and use of the K� metric�

��

� �
�� �������� ������� ��������

Figure � Example line in the output �le including the information about the �tness�

args�cc

Functions for manipulation with arguments passed to a program�

bayesian�cc

Functions for construction and use of Bayesian networks �not including the metric related
functions and some of more speci�c functions de�ned elsewhere��

boa�cc

Functions for the initialization of the BOA	 the BOA itself and a done method for the BOA�

checkCycles�cc

A function that checks what edges would create cycles with a newly added edge and assigns
negative gain for the corresponding edge additions�

computeCounts�cc

Functions for computing counts for all instances of a particular list of string positions or a
list of positions created by adding a position from the array of positions to a particular list
of remaining positions repeatedly�

fitness�cc

The de�nition of �tness functions� in order to add a �tness one has to add it here �plus the
de�nition in the header �le �tness�h�� see documentation or the instructions below�

getFileArgs�cc

Functions for reading the input �le	 printing the description of the parameters that can be
processed	 and the related�

graph�cc

The de�nition of classes OrientedGraph and AcyclicOrientedGraph for manipulation with
oriented graphs�

header�cc

Prints out the header saying the name of the product	 its author	 the date of its release	 and
the �le with input parameters �if any��

help�cc

help �arguments description	 input �le parameters description��

main�cc

Main routine and the de�nition of input parameters�

mymath�cc

Commonly used mathematical functions�

population�cc

Functions for manipulation with the populations of strings and the strings themselves�

��

random�cc

Random number generator related functions �random generator is based on the code by
Fernando Lobo	 Prime Modulus Multiplicative Linear Congruential Generator �PMMLCG��

recomputeGains�cc

A function calling the metric repeatedly in order to recompute the gains for all edge additions
ending in a particular node�

replace�cc

The de�nition of replacement replacing the worst portion of the original population and the
divide and conquer function it uses to separate the worst�

select�cc

The de�nition of truncation selection and the divide and conquer function it uses to separate
the best�

stack�cc

The de�nition of a class IntStack �a stack for int��

startUp�cc

A start�up function for processing the arguments passed to the program and the function
returning the name of the input �le if any was used�

statistics�cc

Functions that compute and print out the statistics during and after the run�

utils�cc

Functions use elsewhere for swapping values of the variables of various data types�

��� Implemented Test Functions

We have implemented the following test functions �ordered by their number��

Number Description

� OneMax �bit�count� function

� Quadratic function without overlapping

� A deceptive function of order � without overlapping

� A trap function of order � without overlapping

� A bipolar function of order
 without overlapping

� A deceptive function of order � with ��bit overlap between adjacent building blocks

For the de�nition of the quadratic function and the trap function of order �	 see Pelikan and
M�uhlenbein ������� For the de�nitions of the rest of the functions	 see Pelikan et al� ������
or Pelikan et al� ������� In the latter two papers	 there is a typo in the de�nition of the trap
function�

��

��� How to Plug�in a New Test Function

The instructions to plug in a new test function	 also provided in fitness�cc follow

�� Create a function with the same input parameters as other �tness functions de�ned in this �le
�e�g�	 onemax� that returns the value of the �tness given a binary chromosome of a particular
length �sent as input parameters to the �tness�� Place the function in the source �le fitness�cc

�� Put the function de�nition in the fitness�h header �le �look at onemax as an example��

�� In �le fitness�cc	 increase the counter numFitness and add a structure to the array of the
�tness descriptions fitnessDesc as described below� For compatibility of recent input �les	
put it at the end of this array in order not to change the numbers of already de�ned and used
functions� The structure has the following items �in this order�	 we also provide an example in
the form of how the items are set for onemax function

a� a string description of the function �informative in output data �les�� For onemax the de�
scription is �ONEMAX��

b� a pointer to the function �simple ��� followed by the name of a function�� For onemax this
is �onemax	 since this function is de�ned in a function named onemax�

c� a pointer to the function that returns true if an input solution is globally optimal and false
if this is not the case� If such function is not available	 just use NULL instead� The optimum
of onemax is in ������� and therefore the function areAllGenesOne �which returns true if the
input string has ��s on all positions� is used� This item is therefore set to �areAllGenesOne

with onemax function�

d� a pointer to the function for initialization of the particular �tness function �not used in any
of these and probably not necessary for most of the functions	 but in case reading input �le
would be necessary or so	 it might be used in this way�� Use NULL if there is no such function�
In onemax	 no initialization is necessary and therefore this item is set to NULL�

e� a pointer to the �done� function	 called when the �tness is not to be used anymore	 in case
some memory is allocated in its initialization� here it can be freed� Use NULL if there is no
need for such function� In onemax	 no such function is necessary and therefore this item is
also set to NULL�

�� The function will be assigned a number equal to its ordering number in the array of function
descriptions fitnessDesc minus � �the functions are assigned numbers consequently starting
at ��� so its number will be equal to the number of �tness de�nitions minus � at the time it is
added� Its description in output �les will be the same as the description string �see �a��

� Final Comments

The code is distributed for academic purposes with absolutely no warranty of any kind	 either
expressed or implied	 to the extent permitted by applicable state law� We are not responsible for
any damage resulting from its proper or improper use�

If you have any comments or identify any bugs	 please contact the author �email is a preferred
way of communication��

��

Acknowledgments

The author would like to thank David E� Goldberg	 Erick Cant�u�Paz	 Fernando Lobo	 and Pavel
Petrovic for their valuable comments to the paper as well as the implementation itself�

The work was sponsored by the Air Force O�ce of Scienti�c Research	 Air Force Materiel
Command	 USAF	 under grant number F��
������������� Research funding for this project was
also provided by a grant from the U�S� Army Research Laboratory under the Federated Laboratory
Program	 Cooperative Agreement DAAL����
�������� The author was also supported by grants
number � ���� �� and � ���� �� of the Scienti�c Grant Agency of Slovak Republic�

The U�S� Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon� The views and conclusions contained
herein are mine and should not be interpreted as necessarily representing the o�cial policies and
endorsements	 either expressed or implied	 of the Air Force of Scienti�c Research or the U�S�
Government�

References

Pelikan	 M�	 Goldberg	 D� E�	 � Cant�u�Paz	 E� ������� Linkage problem� distribution estimation�

and Bayesian networks �Technical Report ������� Urbana	 IL University of Illinois at Urbana�
Champaign�

Pelikan	 M�	 Goldberg	 D� E�	 � Cant�u�Paz	 E� ������� Boa� The bayesian optimization algorithm

�Technical Report ������� Urbana	 IL University of Illinois at Urbana�Champaign�

Pelikan	 M�	 � M�uhlenbein	 H� ������� The bivariate marginal distribution algorithm� In Roy	 R�	
Furuhashi	 T�	 � Chawdhry	 P� K� �Eds��	 Advances in Soft Computing � Engineering Design

and Manufacturing �pp� ���!����� London Springer�Verlag�

��

