iBOA
Incremental Bayesian Optimization Algorithm

Martin Pelikan, Kumara Sastry and David E. Goldberg

Missouri Estimation of Distribution Algorithms Laboratory (MEDAL)
University of Missouri, St. Louis, MO
http://medal.cs.umsl.edu/
pelikan@cs.umsl.edu

Illinois Genetic Algorithms Laboratory
University of Illinois at Urbana-Champaign, Urbana, IL
http://www-illigal.ge.uiuc.edu/
kumara@kumarasastry.com deg@uiuc.edu
Motivation

Estimation of distribution algorithms (EDAs)

- EDAs guide search by building and sampling an explicit probabilistic model of high-quality solutions.
- Why not fully replace population by the probabilistic model?

Incremental EDAs

- Replace population by probabilistic model.
- Update the model incrementally using a few solutions.
- This can lead to savings in memory cost and speedups.
- Proof of concept: Solution of a noisy problem with more than one billion bits (Goldberg et al., 2007).
- But all incremental EDAs use univariate or bivariate models.

Purpose

- Propose incremental Bayesian optimization algorithm.
Outline

1. Starting points
 - Bayesian optimization algorithm (BOA).
 - Incremental EDAs: Compact genetic algorithm (cGA).

2. Incremental BOA (iBOA).

3. Experiments.

4. Future work.

5. Summary and conclusions.
Bayesian Optimization Algorithm (BOA)

BOA (Pelikan, Goldberg, and Cantú-Paz; 1998)

- Build and sample a Bayes net instead of crossover/mutation.
- Model structure and parameters adapt to problem landscape.
Bayesian network has two parts

- **Structure**
 - Structure is defined by directed acyclic graph (DAG).
 - Nodes define variables (string positions).
 - Edges define direct conditional dependencies.

- **Parameters**
 - Parameters specify conditional probabilities of each variable given its parents (variables that this variable depends on).

```
X0  p(X0)
0   0.40
1   0.60

X1  p(X1 | X0)
0 0 0.10
0 1 0.60
1 0 0.90
1 1 0.40

X2  p(X2 | X0 X1)
0 0 0 0.20
0 0 1 0.55
0 1 0 0.70
0 1 1 0.12
1 0 0 0.80
1 0 1 0.45
1 1 0 0.30
1 1 1 0.88
```
Building a Bayesian Network

Two components to learn

1. Learn structure.
2. Learn parameters.
Learning Structure of a Bayesian network

Greedy algorithm

- Start with an empty network (no edges).
- Add one edge at a time that appears to be the best.
- Stop when no more improvement possible.

Deciding on best structures

- Use a scoring metric to evaluate competing structures:

\[
BIC(B) = \sum_{i=1}^{n} \left(-H(X_i|\Pi_i)N - 2^{\Pi_i} \frac{\log_2(N)}{2} \right)
\]

- \(H(X_i|\Pi_i)\) is the conditional entropy of \(X_i\) given parents \(\Pi_i\)
- \(n\) is the number of variables
- \(N\) is the population size
Maximum likelihood estimation

- Parse data (population of points).
- Make maximum likelihood estimate of parameters:

\[p(X_i = x_i | \Pi_i = \pi_i) = \frac{m(X_i = x_i, \Pi_i = \pi_i)}{m(\Pi_i = \pi_i)} \]

- \(m(X_i = x_i, \Pi_i = \pi_i) \): is the number of instances with \(X_i = x_i \) and \(\Pi_i = \pi_i \)
- \(m(\Pi_i = \pi_i) \) denotes the number of instances with \(\Pi_i = \pi_i \)
Compact Genetic Algorithm (cGA)

cGA (Harik et al., 1998)

- Use **probability vector** as a model:
 \[p = (p_1, p_2, \ldots, p_n) \]
 where \(p_i \) denotes probability of 1 in \(i \)th position.

- Probability vector is initialized as
 \[p = (0.5, 0.5, \ldots, 0.5) \]

- **Population is fully eliminated**—Each iteration generates only few solutions, which are used to update the model.
Compact Genetic Algorithm

Iteration

- Generate 2 solutions from the current vector.
- Run a tournament based on fitness: w is winner, l is loser.
- Pretend as if w replaced l in the population of size N.
- Frequencies of 1s change as follows

$$p^*_i = \begin{cases}
 p_i & \text{if } w_i = l_i \\
 p_i + 1/N & \text{if } w_i > l_i \\
 p_i - 1/N & \text{if } w_i < l_i
\end{cases}$$

Reasoning

- The vector moves closer to w and further from l
 - $w_i = l_i$: 0 replaces 0 or 1 replaces 1 \Rightarrow no change.
 - $w_i > l_i$: 1 replaces 0 \Rightarrow increase proportion of 1s by $1/N$.
 - $w_i > l_i$: 0 replaces 1 \Rightarrow decrease proportion of 1s by $1/N$.

Martin Pelikan, Kumara Sastry, David E. Goldberg

iBOA: The Incremental Bayesian Optimization Algorithm
Tournament result

Winner \((0, 1, 1, 0, 1, 1, 0) \)

Loser \((1, 0, 1, 0, 0, 1, 1) \)

Probability vector change for \(N = 100 \)

Old \((0.66, 0.17, 0.42, 0.37, 0.25, 0.14, 0.78) \)

New \((0.65, 0.18, 0.42, 0.37, 0.26, 0.14, 0.77) \)
cGA on 100-bit Onemax

Onemax: \(f(X_1, \ldots, X_n) = \sum_{i=1}^{n} X_i \)
Why iBOA?

cGA
- cGA does not need a population.
- But cGA is limited to simple problems.
- Similar with other incremental EDAs...

BOA
- BOA can encode contexts of arbitrary order.
- This allows BOA to solve much more complex problems.
- But BOA needs an explicit population of points.
- Similar with other multivariate EDAs...

iBOA = BOA + cGA
- How can we combine the benefits of the two?
What needs to be done?

- Update structure incrementally.
- Update parameters (conditional probabilities) incrementally.
Basic setup

- Consider marginal probability $p(X_i, \Pi_i)$.
- Conditional probabilities can be computed as

$$p(X_i|\Pi_i) = \frac{p(X_i, \Pi_i)}{p(\Pi_i)} = \frac{p(X_i, \Pi_i)}{\sum_{x_i} p(X_i = x_i, \Pi_i)}$$

Initialization of $p(X_i, \Pi_i)$ according to uniform distribution

$$p(X_i = x_i, \Pi_i = \pi_i) = \frac{1}{2^{|\Pi_i|} + 1}$$

Update the marginal probability table for $P(X_i, \Pi_i)$

- Increment probability of entry consistent with w by $1/N$.
- Decrement probability of entry consistent with l by $1/N$.
Incremental Parameter Updates: Example for $N = 100$

Tournament result

- **Winner**: $(0, 1, 1, 0, 1, 1, 0)$
- **Loser**: $(1, 0, 1, 0, 0, 1, 1)$

Marginal probability table update

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_4</th>
<th>X_5</th>
<th>$p_{old}(X_1, X_4, X_5)$</th>
<th>$p_{new}(X_1, X_4, X_5)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.26</td>
<td>0.25</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.14</td>
<td>0.14</td>
</tr>
</tbody>
</table>
Incremental structure updates

- Want to be able to change structure over time.
- Can start with empty network and build up over time.
- But we can’t predict how the structures will look in future!
- So we have to consider all possibilities.

Efficiency becomes a problem

- Consider networks of at most k parents.
- Must maintain all marginal probabilities of order $k + 1$.
- This leads to $\binom{n}{k+1}$ tables or $\Omega(2^k n^{k+1})$ probabilities!

Challenge

- Can we do better?
Challenge: Some numbers

Illustration

<table>
<thead>
<tr>
<th>n</th>
<th>k</th>
<th>$\binom{n}{k+1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5</td>
<td>210</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>38,760</td>
</tr>
<tr>
<td>30</td>
<td>5</td>
<td>593,775</td>
</tr>
<tr>
<td>40</td>
<td>5</td>
<td>3,838,380</td>
</tr>
<tr>
<td>50</td>
<td>5</td>
<td>15,890,700</td>
</tr>
</tbody>
</table>

Martin Pelikan, Kumara Sastry, David E. Goldberg

iBOA: The Incremental Bayesian Optimization Algorithm
One step at a time

- Start with empty network.
- Always store enough probabilities to add one more edge.
- Parameters are updated in each iteration.
- Once new addition seem worthy (scoring metric), do it.
 - Add new edge.
 - Add new parameters, needed for yet another addition.
 - New probabilities created from the old ones using independence assumptions to fill in the holes.
- Need only $O(n^2)$ probability tables to maintain.
Challenge Met: Some numbers

Illustration

<table>
<thead>
<tr>
<th>n</th>
<th>k</th>
<th>$\binom{n}{k+1}$</th>
<th>n^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5</td>
<td>210</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>38,760</td>
<td>400</td>
</tr>
<tr>
<td>30</td>
<td>5</td>
<td>593,775</td>
<td>900</td>
</tr>
<tr>
<td>40</td>
<td>5</td>
<td>3,838,380</td>
<td>1,600</td>
</tr>
<tr>
<td>50</td>
<td>5</td>
<td>15,890,700</td>
<td>2,500</td>
</tr>
</tbody>
</table>
How does iBOA work?

- Start with an empty network (similar to cGA).
- Grow the network over time.
- Update both parameters and structure incrementally.
- Population is not needed at all!
Experimental Setup

Description of experiments

- Use bisection to find adequate population size (within 5%).
- Require 30 successful runs (out of 30 runs).
- Upper bound the number of generations by n.
- Consider multiple problem sizes.
- Analyze scalability (num. evaluations w.r.t. problem size).
- Use tournaments of size 4 (best and worst update model).

Test problems

- Trap-4.
- Trap-5.
Test Problems

Trap-4: Concatenated trap of order 4

\[f_{\text{trap}4} = \frac{n}{4} \sum_{i=1}^{n/4} \text{trap}_4(X_{4i-3} + X_{4i-2} + X_{4i-1} + X_{4i}) \]

Trap-5: Concatenated trap of order 5

\[f_{\text{trap}5} = \frac{n}{5} \sum_{i=1}^{n/5} \text{trap}_5(X_{5i-4} + X_{5i-3} + X_{5i-2} + X_{5i-1} + X_{5i}) \]

Trap of order \(k \)

\[\text{trap}_k(u) = \begin{cases} \\ k & \text{if } u = k \\ k - u - 1 & \text{otherwise} \end{cases} \]
Results on Trap-4

iBOA: The Incremental Bayesian Optimization Algorithm

Martin Pelikan, Kumara Sastry, David E. Goldberg
Future Work

Diversity maintenance and elitism

- How to incorporate elitism?
- How to incorporate niching for useful diversity maintenance?

Memory efficiency

- Model still takes considerable chunk of memory.
- Asymptotic growth of memory complexity is the same for BOA & iBOA.
- How can we create more efficient representations?
 - Use local structures in Bayesian networks.
 - Use alternative model-building and sampling procedures.

Model building

- Add more operators (e.g. edge removal, edge reversal).
Summary

- Proposed incremental Bayesian optimization alg. (iBOA).
- Analyzed iBOA performance.

Conclusions

- Design of incremental EDAs with multivariate models possible.
- Opened the door to new generation of incremental EDAs.
- Incremental EDAs with multivariate models can scalably solve decomposable problems without maintaining populations of candidate solutions.
- But some challenges still remain
 - Memory cost is still considerable.
 - Not so easy to incorporate niching and elitism.
Acknowledgments

- NSF; NSF CAREER grant ECS-0547013.
- U.S. Air Force, AFOSR; FA9550-06-1-0096.
- University of Missouri; High Performance Computing Collaboratory sponsored by Information Technology Services; Research Award; Research Board.