Current and Planned Projects at MEDAL

Martin Pelikan
Missouri Estimation of Distribution Algorithms Lab (MEDAL)
Department of Mathematics and Computer Science
University of Missouri in St. Louis
pelikan@cs.umsl.edu
Welcome
Program

9:30am Martin Pelikan (Missouri Estimation of Distribution Algorithms Lab (MEDAL), St. Louis, MO)
Quo Vadis MEDAL: Current and Planned Projects at MEDAL

10:05am Kenneth P. Turvey (Missouri Estimation of Distribution Algorithms Lab (MEDAL), St. Louis, MO)
XCS in Dynamic Environments

10:40am Coffee Break

10:55am Kumara Sastry (Illinois Genetic Algorithms Lab (IlliGAL), Urbana, IL)
Efficiency Enhancement of Estimation of Distribution Algorithms

11:30am David E. Goldberg (Illinois Genetic Algorithms Lab (IlliGAL), Urbana, IL)
Little Models, Big Results

12:05pm Lunch Break

1:30pm Cezary Janikow (University of Missouri, St. Louis, MO)
Representations and Heuristics in GP

2:05pm Moshe Looks (Washington University, St. Louis, MO) and Ben Goertzel (Novamente LLC)
Towards Competent Genetic Programming - What are the Missing Ingredients?

2:40pm Shigeyoshi Tsutsui (Hannan University, Matabara, Osaka, Japan)
Node Histogram vs. Edge Histogram: A Comparison of PMBGAs in Permutation Domains

3:15pm Coffee Break

3:30pm Mark Jakiela (Washington University, St. Louis, MO)
Open collaborative design of tangible artifacts - simulation and optimization?

4:05pm Open Discussion
This Talk

- Current and planned MEDAL projects
 - Optimization via probabilistic modeling.
 - Learning classifier systems.
 - Neural nets with evolutionary algorithms.
Optimization

- Task
 - Given set of candidate solutions & evaluation function.
 - Find the best candidate solution(s).

- Three goals
 - Robustness
 Applicability to a broad range of problems.
 - Scalability
 Scalable performance in tough problems.
 - Practicality
 From academia to industry.
Optimization via Probabilistic Modeling

- Estimation of distribution algorithms (EDAs)
 - Combine evolutionary computing and machine learning.
 - Maintain a population of candidate solutions.
 - Build probabilistic model of high-quality candidates.
 - Sample built model to generate new candidates.
Past Work on EDAs

- Many powerful EDAs
 - Scalable solutions for previously intractable problems.
 - Powerful efficiency enhancement techniques.
 - Important applications in various areas.
 - Most work for fixed-length, discrete vector solutions, but important work in other domains, too.

- Hierarchical BOA (Pelikan, Goldberg, 2001)
 - Solutions are fixed-length, discrete vectors.
 - hBOA scalably solves nearly decomposable and hierarchical problems, $O(n^2)$ evaluations or faster.
 - Can be used for other representations if solutions can be mapped into fixed-length discrete vectors.
Challenges

- Extend current EDAs to capture other regularities
 - Example: Motifs=repeated substrings (Looks, 2006).

- Match progress for fixed-length, discrete representations in other representations.
 - Real-valued / variable length vectors.
 - Permutations and schedules.
 - Program codes / labeled trees.

- Efficiency enhancement.

- Applications.
Efficiency Enhancement

- Efficiency enhancement (EE)
 - Low-order polynomial scalability is great, but sometimes not enough.
 - Use EE methods to further improve efficiency.
- Example: Parallelization
Efficiency Enhancement: Past Work

- Past work
 - Parallelization.
 - Can effectively use large parallel computers.
 - Fitness evaluation relaxation.
 - Can have speedups of 30-50 on single processor.
 - Hybridization.
 - Can solve intractable problems with good hybrids.
 - Prior knowledge utilization.
 - Can incorporate various kinds of prior knowledge.
 - Incremental and sporadic model building.
 - Leads to significant speedups without affecting scalability.
Example: Parallelization

- Diamond - speedup for 2D spin glass 20x20, N=4000
- Dot - predicted speedup for 2D spin glass 20x20, N=4000
- Circle - speedup for 2D spin glass 25x25, N=6000
- Triangle - predicted speedup for 2D spin glass 25x25, N=6000
- Triangle with dot - speedup for 2D spin glass 30x30, N=8000
- Square with dot - predicted speedup for 2D spin glass 30x30, N=8000
Example: Hybridization
Example: Sporadic Model-Building

![Graph showing the relationship between problem size and CPU speedup with SMB.](image)
Challenges in Efficiency Enhancement

- Design new efficiency enhancement techniques.
- Combine efficiency enhancement techniques to multiply speedups
 - What combinations make sense?
 - How to do come these techniques well?
 - Expected speedups?
- Examples
 - Parallelization of model building and hybridization complement each other.
 - Parallelization of model building and sporadic model building multiply.
Applications

- Computational physics
 - Spin glasses, structure optimization (molecules).
- Complexity theory
 - Graph problems.
- Classification
 - Feature subset selection, feature extraction.
- Medicine and bioinformatics
 - Mostly classification, but also other problems.
- Scheduling and OR problems
Learning Classifier Systems

- LCS combine evolutionary computation and reinforcement learning.

- Task
 - Environment defines states, actions, rewards.
 - Learn reward predictions for state/action pairs.
 - Use inspiration from evolutionary computation.
LCS Challenges

- LCS in dynamic environments
 - How do LCS work in dynamic environments?
 - Can we make LCS work better in such environments?
- Transfer of ideas from EC to LCSs
 - Can we learn from EC or EDAs to make better LCSs?
 - Example: Efficiency enhancement, model building.
- Applications of LCS
 - Classification.
 - Bioinformatics.
Neural Nets: Neuroevolution

- Neural networks (NNs)
 - Maps inputs to outputs.
 - Powerful way to model complex functions.
 - Incorporating evolutionary computing into NNs leads to important results.
NN Challenges and Applications

- Challenges
 - How to design good network topology?
 - How to choose good connection weights?
 - How to do “linkage learning” in neural nets?
 - Many neurons with few connections or few neurons with many connections?

- Applications
 - Control (in simulated environments).
 - Modeling/regression.
Example: Enforced Subpopulations

Environment
Example Environment: RARS

- Robot Auto Racing Simulation
 http://rars.sourceforge.net/
Summary

- Projects in 3 areas
 - Optimization using probabilistic modeling.
 - Learning classifier systems.
 - Neural networks.
- 3 research directions
 - Design and analysis.
 - Efficiency enhancement.
 - Applications.
Thank You

- Questions or comments?
- Enjoy the event!