Obtaining Ground States of Ising Spin Glasses via Optimizing Bonds Instead of Spins

Martin Pelikan
Missouri Estimation of Distribution Algorithms Lab (MEDAL)
University of Missouri-St. Louis
E-mail: pelikan@cs.umsl.edu
WWW: http://medal.cs.umsl.edu/

Alexander K. Hartmann
Computational Theoretical Physics
Universität Oldenburg, Germany
E-mail: a.hartmann@uni-oldenburg.de
WWW: http://www.theorie.physik.uni-goettingen.de/~hartmann/

Motivation
• Ising spin glasses are prototypical models for disordered systems.
• Ising spin glasses are also challenging class of optimization problems
 • Fast growth of the number of local optima.
 • High-quality solutions divided by barriers of low-quality ones.
 • High-order interactions.
 • Cannot be factored into subproblems of bounded order.
• Hierarchical BOA (hBOA) performs very well on Ising spin glasses and other difficult combinatorial and constraint satisfaction problems.
• However, standard GAs and local search perform poorly.
• Questions
 • Can we improve performance of standard evolutionary algorithms on spin glasses by transforming the problem in some way?
 • Can we generalize this problem transformation to apply to other important classes of constraint satisfaction problems (CSPs), such as MAXSAT?

Goals
• Transform the Ising spin glass problem to optimize bonds instead of spins in order to simplify the problem.
• Test various evolutionary algorithms on the transformed problem and analyze the effects of the transformation.

Ising spin glass
• Ising spin glass
 • Spins arranged on a 2D or 3D grid.
 • Spins \{s_i\} can obtain values 2 values: +1 or -1.
 • Neighbors connected (+ periodic boundary conditions)
 • Each connection (i,j) has a weight \(J_{i,j}\)
 • Spin glass instance specified by all \(J_{i,j}\)

• Energy of a spin glass
 \[E(C) = \sum_{(i,j)} s_i J_{i,j} s_j \]
• Optimization problem: Find ground state
 • Given all coupling constants \(J_{i,j}\)
 • Find values of spins so that energy is minimized.

Optimizing bonds instead of spins
• Candidate solutions represented by binary vectors (1 bit = 1 spin).
• After selection, spin vectors are transformed into bond vectors (another representation).
• Variation is applied to the transformed solutions.
• The new solutions are transformed back into spin vectors.

Transforming spins to bonds and vice versa
• Spins to couplings (S \(\rightarrow\) C)
 • Each coupling maps to a bit.
 • 1: Satisfied constraint (negative energy)
 • 0: Unsatisfied constraint (positive energy)
• Couplings to spins (C \(\rightarrow\) S)
 • Start in a random spin, set it to random value.
 • In each step choose a spin to set to maximize the number of consistent couplings (ties are resolved randomly).

Experiments
• Test problems
 • 2D spin glasses of size 6x6 to 16x16.
 • 1000 random instances for each size (couplings are +1 or -1)

Genetic algorithm (two-point crossover)

Univariate marginal distribution algorithm (UMDA)

Hierarchical BOA (hBOA)

Conclusions
• Transformation significantly helps simple evolutionary algorithms like GA and UMDA.
• However, hBOA works better without transformation.
• Can we generalize these results?

Acknowledgments
• NSF: NSF CAREER grant ECS-0547013
• VolkswagenStiftung (Germany) within the program Nachwuchsgruppen an Universitäten
• University of Missouri; High Performance Computing Collaboratory sponsored by Information Technology Services, Research Award, Research Board