Loading

2010

MEDAL Report 2010002
Spurious Dependencies and EDA Scalability
Elizabeth Radetic and Martin Pelikan  (2010)

Abstract. Numerous studies have shown that advanced estimation of distribution algorithms (EDAs) often discover spurious (unnecessary) dependencies. Nonetheless, only little prior work exists that would study the effects of spurious dependencies on EDA performance. This paper examines the effects of spurious dependencies on the performance and scalability of EDAs with the main focus on EDAs with marginal product models and the onemax problem. A theoretical model is proposed to analyze the effects of spurious dependencies on the population sizing in EDAs and the theory is verified with experiments. The effects of spurious dependencies on the number of generations are studied empirically.


Download PDF

Download PS



Go back


Missouri Estimation of Distribution Algorithms Laboratory
Department of Mathematics and Computer Science
University of Missouri-St. Louis, St. Louis, MO

                   

            Web design by Martin Pelikan