MEDAL Report 2011001
Pairwise and Problem-Specific Distance Metrics in the Linkage Tree Genetic Algorithm
Martin Pelikan, Mark Hauschild, and Dirk Thierens  (2011)

Abstract. The linkage tree genetic algorithm (LTGA) identifies linkages between problem variables using an agglomerative hierarchical clustering algorithm and linkage trees. This enables LTGA to solve many decomposable problems that are difficult with more conventional genetic algorithms. The goal of this paper is two-fold: (1) Present a thorough empirical evaluation of LTGA on a large set of problem instances of additively decomposable problems and (2) speed up the clustering algorithm used to build the linkage trees in LTGA by using a pairwise and a problem-specific metric.

Download PDF

Download PS

Go back

Missouri Estimation of Distribution Algorithms Laboratory
Department of Mathematics and Computer Science
University of Missouri-St. Louis, St. Louis, MO


            Web design by Martin Pelikan